Chromatin Acetylation, Memory, and LTP Are Impaired in CBP+/− Mice A Model for the Cognitive Deficit in Rubinstein-Taybi Syndrome and Its Amelioration
نویسندگان
چکیده
We studied a mouse model of the haploinsufficiency form of Rubinstein-Taybi syndrome (RTS), an inheritable disorder caused by mutations in the gene encoding the CREB binding protein (CBP) and characterized by mental retardation and skeletal abnormalities. In these mice, chromatin acetylation, some forms of long-term memory, and the late phase of hippocampal long-term potentiation (L-LTP) were impaired. We ameliorated the L-LTP deficit in two ways: (1) by enhancing the expression of CREB-dependent genes, and (2) by inhibiting histone deacetyltransferase activity (HDAC), the molecular counterpart of the histone acetylation function of CBP. Inhibition of HDAC also reversed the memory defect observed in fear conditioning. These findings suggest that some of the cognitive and physiological deficits observed on RTS are not simply due to the reduction of CBP during development but may also result from the continued requirement throughout life for both the CREB co-activation and the histone acetylation function of CBP.
منابع مشابه
CBP histone acetyltransferase activity regulates embryonic neural differentiation in the normal and Rubinstein-Taybi syndrome brain.
Increasing evidence indicates that epigenetic changes regulate cell genesis. Here, we ask about neural precursors, focusing on CREB binding protein (CBP), a histone acetyltransferase that, when haploinsufficient, causes Rubinstein-Taybi syndrome (RTS), a genetic disorder with cognitive dysfunction. We show that neonatal cbp(+/-) mice are behaviorally impaired, displaying perturbed vocalization ...
متن کاملA mouse model of Rubinstein-Taybi syndrome: defective long-term memory is ameliorated by inhibitors of phosphodiesterase 4.
Mice carrying a truncated form of cAMP-responsive element binding protein (CREB)-binding protein (CBP) show several developmental abnormalities similar to patients with Rubinstein-Taybi syndrome (RTS). RTS patients suffer from mental retardation, whereas long-term memory formation is defective in mutant CBP mice. A critical role for cAMP signaling during CREB-dependent long-term memory formatio...
متن کاملSimulations suggest pharmacological methods for rescuing long-term potentiation.
Congenital cognitive dysfunctions are frequently due to deficits in molecular pathways that underlie the induction or maintenance of synaptic plasticity. For example, Rubinstein-Taybi syndrome (RTS) is due to a mutation in cbp, encoding the histone acetyltransferase CREB-binding protein (CBP). CBP is a transcriptional co-activator for CREB, and induction of CREB-dependent transcription plays a ...
متن کاملTransgenic mice expressing a truncated form of CREB-binding protein (CBP) exhibit deficits in hippocampal synaptic plasticity and memory storage.
Deletions, translocations, or point mutations in the CREB-binding protein (CBP) gene have been associated with Rubinstein-Taybi Syndrome; a human developmental disorder characterized by retarded growth and reduced mental function. To examine the role of CBP in memory, transgenic mice were generated in which the CaMKII alpha promoter drives expression of an inhibitory truncated CBP protein in fo...
متن کاملSyndromic features and mild cognitive impairment in mice with genetic reduction on p300 activity: Differential contribution of p300 and CBP to Rubinstein-Taybi syndrome etiology.
Rubinstein-Taybi syndrome (RSTS) is a complex autosomal-dominant disease characterized by mental and growth retardation and skeletal abnormalities. A majority of the individuals diagnosed with RSTS carry heterozygous mutation in the gene CREBBP, but a small percentage of cases are caused by mutations in EP300. To investigate the contribution of p300 to RSTS pathoetiology, we carried out a compr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 42 شماره
صفحات -
تاریخ انتشار 2004