Disposable electrochemiluminescent biosensor using bidentate-chelated CdTe quantum dots as emitters for sensitive detection of glucose.

نویسندگان

  • Lingxiao Cheng
  • Shengyuan Deng
  • Jianping Lei
  • Huangxian Ju
چکیده

A novel disposable solid-state electrochemiluminescent (ECL) biosensor was fabricated by immobilizing glucose oxidase and surface-unpassivated CdTe quantum dots (QDs) on a screen-printed carbon electrode (SPCE). The surface morphology of the biosensor was characterized with scanning electron microscopy and atomic force microscopy. With dissolved O(2) as an endogenous coreactant, QDs/SPCE showed strong ECL emission in pH 9.0 HCl-Tris buffer solution with low ECL peak potential at -0.89 V. The ECL intensity was twice that with hydrogen peroxide as coreactant at the same concentration. This phenomenon meant the ECL decreased upon consumption of dissolved O(2) and thus could be applied to the construction of oxidase-based ECL biosensors. With glucose oxidase as a model enzyme, the biosensor showed rapid response to glucose with a linear range of 0.8 to 100 μM and a detection limit of 0.3 μM. Further detection of glucose contained in human serum samples showed acceptable sensitivity and selectivity. This work provided a promising application of QDs in ECL-based disposable biosensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple Image Analysis Method for Determination of Glucose by using Glucose Oxidase CdTe/TGA Quantum Dots

Glucose, as the major energy source in cellular metabolism, plays an important role in the natural growth of cells. Herein, a simple, rapid and low-cost method for the glucose determination by utilizing glucose oxidase and CdTe/thioglycolic acid (TGA) quantum dots (QDs) on a thin layer chromatography (TLC) plate has been described. The detection was based on the combination of the glucose enzym...

متن کامل

Aptamer-based highly sensitive electrochemiluminescent detection of thrombin via nanoparticle layer-by-layer assembled amplification labels.

The preparation and use of a new class of signal amplification label, the CdTe quantum dot layer-by-layer assembled polystyrene microbead composite, for amplified ultrasensitive electrochemiluminescent detection of thrombin is described.

متن کامل

Signal Amplification Strategy Based on TiO2-Nanotube Layers and Nanobeads Carrying Quantum Dots for Electrochemiluminescent Immunosensors

Self-organized TiO2-nanotube layers can be used for immunoassay-type sensing in combination with amplifying CdTe labels in a direct and very sensitive electrochemiluminescent (ECL) configuration. Key properties for this method are the conductivity of the TiO2 nanotubes, and their transparency for light emitted from the CdTe labels at approximately 2.4 eV. To demonstrate the potential of this pl...

متن کامل

An Ultrasensitive Electrochemiluminescent Immunoassay for Aflatoxin M1 in Milk, Based on Extraction by Magnetic Graphene and Detection by Antibody-Labeled CdTe Quantumn Dots-Carbon Nanotubes Nanocomposite

An ultrasensitive electrochemiluminescent immunoassay (ECLIA) for aflatoxins M1 (ATM1) in milk using magnetic Fe3O4-graphene oxides (Fe-GO) as the absorbent and antibody-labeled cadmium telluride quantum dots (CdTe QDs) as the signal tag is presented. Firstly, Fe3O4 nanoparticles were immobilized on GO to fabricate the magnetic nanocomposites, which were used as absorbent to ATM1. Secondly, afl...

متن کامل

Synthesis of CdTe quantum dots coated with biocompatible materials and investigation of their identification Properties

Fingerprint identification or dactyloscopy is a method for human identification. The impressions left by a human finger on surfaces are not visible to naked eyes (latent fingerprint); therefore, they require revelation to become visible and identified. Within the last century, several fingerprint revelation techniques such as optical, physical, and chemical were studied. These traditional metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 137 1  شماره 

صفحات  -

تاریخ انتشار 2012