Learning From Disagreements: Discriminative Performance Evaluation

نویسندگان

  • Christina Pavlopoulou
  • David Martin
  • Stella Yu
  • Hao Jiang
چکیده

Selecting test cases in order to evaluate computer vision methods is important, albeit has not been addressed before. If the methods are evaluated on examples on which they perform very well or very poorly then no reliable conclusions can be made regarding the superiority of one method versus the others. In this paper we put forth the idea that algorithms should be evaluated on test cases they disagree most. We present a simple method which identifies the test cases that should be taken into account when comparing two algorithms and at the same time assesses the statistical significance of the differences in performance. We employ our methodology to compare two object detection algorithms and demonstrate its usefulness in enhancing the differences between the methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analyzing new features of infected web content in detection of malicious web pages

Recent improvements in web standards and technologies enable the attackers to hide and obfuscate infectious codes with new methods and thus escaping the security filters. In this paper, we study the application of machine learning techniques in detecting malicious web pages. In order to detect malicious web pages, we propose and analyze a novel set of features including HTML, JavaScript (jQuery...

متن کامل

دو روش تبدیل ویژگی مبتنی بر الگوریتم های ژنتیک برای کاهش خطای دسته بندی ماشین بردار پشتیبان

Discriminative methods are used for increasing pattern recognition and classification accuracy. These methods can be used as discriminant transformations applied to features or they can be used as discriminative learning algorithms for the classifiers. Usually, discriminative transformations criteria are different from the criteria of  discriminant classifiers training or  their error. In this ...

متن کامل

Discriminative Learning of Generative Models for Sequence Classification and Motion Tracking

I consider the issue of learning generative probabilistic models (e.g., Bayesian Networks) for the problems of classification and regression. As the generative models now serve as target-predicting functions, the learning problem can be treated differently from the traditional density estimation. Unlike the likelihood maximizing generative learning that fits a model to overall data, the discrim...

متن کامل

Learning Discriminative Sufficient Statistics Score Space for Classification

Generative score spaces provide a principled method to exploit generative information, e.g., data distribution and hidden variables, in discriminative classifiers. The underlying methodology is to derive measures or score functions from generative models. The derived score functions, spanning the so-called score space, provide features of a fixed dimension for discriminative classification. In ...

متن کامل

Improving Non-native Speech Recognition Performance by Discriminative Training for Language Model in a CALL System

High non-native speech recognition performance is always a challenge for a CALL (Computer Assisted Language Learning) systems using ASR (Automatic Speech Recognition) for second language learning. Conventionally, possible error patterns, based on linguistic knowledge, are added to the ASR grammar network. However, the effectiveness of this approach depends much on the prior linguistic knowledge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009