Callosal projections drive neuronal-specific responses in the mouse auditory cortex.
نویسندگان
چکیده
In the auditory cortex (AC), interhemispheric communication is involved in sound localization processes underlying spatial hearing. However, the neuronal microcircuits recruited by the callosal projections are unknown. We addressed this fundamental question by taking advantage of optogenetics and examining directly the functional effects of interhemispheric inputs to specific pyramidal neurons in layer 5 of the mouse AC, defined by their output as either corticocortical (CCort) or corticocollicular (CCol). We found that callosal projections suppress the activity of CCort pyramidal neurons, but facilitate firing of CCol pyramidal neurons. This difference is mechanistically explained by callosal activation of fast-spiking parvalbumin-expressing interneurons (FS-PARV), which provide selective inhibition to CCort pyramidal neurons. Our results establish two distinct previously unknown cortical circuits underlying either callosal suppression (callosal projections → FS-PARV → CCort) or facilitation (callosal projections → CCol) of projecting neurons in layer 5 of the AC and attribute a specific function to a genetically defined type of interneuron in interhemispheric communication.
منابع مشابه
Activity-Dependent Callosal Axon Projections in Neonatal Mouse Cerebral Cortex
Callosal axon projections are among the major long-range axonal projections in the mammalian brain. They are formed during the prenatal and early postnatal periods in the mouse, and their development relies on both activity-independent and -dependent mechanisms. In this paper, we review recent findings about the roles of neuronal activity in callosal axon projections. In addition to the well-do...
متن کاملActivity-dependent development of callosal projections in the somatosensory cortex.
The corpus callosum is the largest commissural system in the mammalian brain, but the mechanisms underlying its development are not well understood. Here we report that neuronal activity is necessary for the normal development and maintenance of callosal projections in the mouse somatosensory cortex. We labeled a subpopulation of layer II/III callosal neurons via in utero electroporation and tr...
متن کاملEvidence for activity-dependent cortical wiring: formation of interhemispheric connections in neonatal mouse visual cortex requires projection neuron activity.
Neuronal activity plays a pivotal role in shaping neuronal wiring. We investigated the role of neuronal activity in the formation of interhemispheric (callosal) axon projections in neonatal mouse visual cortex. Axonal labeling with enhanced green fluorescent protein (GFP) was used to demonstrate spatially organized pattern of callosal projections: GFP-labeled callosal axons from one hemisphere ...
متن کاملEffects of core auditory cortex deactivation on neuronal response to simple and complex acoustic signals in the contralateral anterior auditory field.
Interhemispheric communication has been implicated in various functions of sensory signal processing and perception. Despite ample evidence demonstrating this phenomenon in the visual and somatosensory systems, to date, limited functional assessment of transcallosal transmission during periods of acoustic signal exposure has hindered our understanding of the role of interhemispheric connections...
متن کاملInfluence of core auditory cortical areas on acoustically evoked activity in contralateral primary auditory cortex.
In contrast to numerous studies of transcallosal communication in visual and somatosensory cortices, the functional properties of interhemispheric connections between auditory cortical fields have not been widely scrutinized. Therefore, the purpose of the present investigation was to measure the magnitude and type (inhibitory/excitatory) of modulatory properties of core auditory fields on contr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 35 17 شماره
صفحات -
تاریخ انتشار 2015