Using the Wavenet for function approximation
نویسندگان
چکیده
When the aim is to make an arbitrary nonlin-ear mapping, neural networks are known to be a suitable technique. The Wavenet combines them with the wavelet transform, enabling a multi-scale approximation, while dilation and translation parameters can be t to the data. Some properties of the Wavenet are investigated and an outlook to application in machinery monitoring is provided.
منابع مشابه
Wavelet Neural Network Algorithms with Applications in Approximation Signals
In this paper we present algorithms which are adaptive and based on neural networks and wavelet series to build wavenets function approximators. Results are shown in numerical simulation of two wavenets approximators architectures: the first is based on a wavenet for approach the signals under study where the parameters of the neural network are adjusted online, the other uses a scheme approxim...
متن کاملContinuous Discrete Variable Optimization of Structures Using Approximation Methods
Optimum design of structures is achieved while the design variables are continuous and discrete. To reduce the computational work involved in the optimization process, all the functions that are expensive to evaluate, are approximated. To approximate these functions, a semi quadratic function is employed. Only the diagonal terms of the Hessian matrix are used and these elements are estimated fr...
متن کاملA method to obtain the best uniform polynomial approximation for the family of rational function
In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...
متن کاملApproximation of a Fuzzy Function by Using Radial Basis Functions Interpolation
In the present paper, Radial Basis Function interpolations are applied to approximate a fuzzy function $tilde{f}:Rrightarrow mathcal{F}(R)$, on a discrete point set $X={x_1,x_2,ldots,x_n}$, by a fuzzy-valued function $tilde{S}$. RBFs are based on linear combinations of terms which include a single univariate function. Applying RBF to approximate a fuzzy function, a linear system wil...
متن کاملSynthesis of Wavelet Filters using Wavelet Neural Networks
An application of Beta wavelet networks to synthesize pass-high and pass-low wavelet filters is investigated in this work. A Beta wavelet network is constructed using a parametric function called Beta function in order to resolve some nonlinear approximation problem. We combine the filter design theory with wavelet network approximation to synthesize perfect filter reconstruction. The order fil...
متن کامل