The effects of diameter and chirality on the thermal transport in free-standing and supported carbon-nanotubes
نویسندگان
چکیده
We use molecular dynamics simulations to explore the lattice thermal transport in free-standing and supported single-wall carbon-nanotube (SWCNT) in comparison to that in graphene nanoribbon and graphene sheet. For free-standing SWCNT, the lattice thermal conductivity increases with diameter and approaches that of graphene, partly due to the curvature. Supported SWCNT thermal conductivity is reduced by 34%-41% compared to the free-standing case, which is less than that in supported graphene. Also, it shows an evident chirality dependence by varying about 10%, which we attribute to chirality-dependent interfacial phonon scattering. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4725194]
منابع مشابه
Ab Initio Study of Chirality Effects Onphonon Spectra, Mechanical and Thermal Properties of Nearly Samediameter Single Wall Carbon Nanotubes
In this paper, we have used density functional perturbation theory (DFPT) and Pseudo-potential method to calculate the phonon spectrum, phonon density of states (DOS), specific heat capacity and mechanical properties of (5,5) armchair and (9,0) zigzag Single Wall Carbon Nanotubes (SWCNTs). Our calculations show that Young’s modulusfor (5,5) and (9,0) nanotubesare higher than 1TPa. We have also ...
متن کاملInfluence of Cross-Section Geometry and Wire Orientation on the Phonon Shifts in Ultra-Scaled Si Nanowires
Related Articles Assessment of phonon boundary scattering from light scattering standpoint J. Appl. Phys. 112, 063513 (2012) The influence of phonon scatterings on the thermal conductivity of SiGe nanowires Appl. Phys. Lett. 101, 043114 (2012) Size dependent surface dissipation in thick nanowires Appl. Phys. Lett. 100, 263112 (2012) A fundamental numerical and theoretical study for the vibratio...
متن کاملRole of Interatomic Potentials in Simulation of Thermal Transport in Carbon Nanotubes
Interatomic potentials, which describe interactions between elements of nanosystems, are crucial in theoretical study of their physical properties. We focus on two well known empirical potentials, i.e. Tersoff's and Brenner's potentials, and compare their performance in calculation of thermal transport in carbon nanotubes. In this way, we study the temperature and diameter dependence of thermal...
متن کاملAnalysis of Nonlinear Vibrations of Slightly Curved Tripled-Walled Carbon Nanotubes Resting on Elastic Foundations in a Magneto-Thermal Environment
In this work, nonlocal elasticity theory is applied to analyze nonlinear free vibrations of slightly curved multi-walled carbon nanotubes resting on nonlinear Winkler and Pasternak foundations in a thermal and magnetic environment. With the aid of Galerkin decomposition method, the systems of nonlinear partial differential equations are transformed into systems of nonlinear ordinary differentia...
متن کاملThe Attitude of Variation of Elastic Modules in Single Wall Carbon Nanotubes: Nonlinear Mass-Spring Model
The examination of variation of elastic modules in single wall carbon nanotubes (SWCNTs) is the aim of this paper. Full nonlinear spring-like elements are employed to simulate specific atomic structures in the commercial code ABAQUS. Carbon atoms are attached to each node as a mass point using atomic mass of carbon atoms. The influence of dimensions such as variation of length, diameter, aspect...
متن کامل