Inference in Markov Blanket Networks
نویسنده
چکیده
Bayesian networks have been successfully used to model joint probabilities in many cases. When dealing with continuous variables and nonlinear relationships neural networks can be used to model conditional densities as part of a Bayesian network. However, doing inference can then be com-putationally expensive. Also, information is implicitly passed backwards through neural networks, i.e. from their output to the input. Used in this \inverse" mode neural networks often perform suboptimal. We suggest a diierent type of model called Markov blanket model (MBM). Here the neu-ral networks are used in the forward direction only. This gives advantages in speed and guarantees to match the performance of the underlying neural network on complete data.
منابع مشابه
Learning Bayesian Network Structure using Markov Blanket in K2 Algorithm
A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG). There are basically two methods used for learning Bayesian network: parameter-learning and structure-learning. One of the most effective structure-learning methods is K2 algorithm. Because the performance of the K2 algorithm depends on node...
متن کاملAttractor Dynamics in Feedforward Neural Networks
We study the probabilistic generative models parameterized by feedforward neural networks. An attractor dynamics for probabilistic inference in these models is derived from a mean field approximation for large, layered sigmoidal networks. Fixed points of the dynamics correspond to solutions of the mean field equations, which relate the statistics of each unit to those of its Markov blanket. We ...
متن کاملExact Algorithms for MRE Inference
Most Relevant Explanation (MRE) is an inference task in Bayesian networks that finds the most relevant partial instantiation of target variables as an explanation for given evidence by maximizing the Generalized Bayes Factor (GBF). No exact algorithm has been developed for solving MRE previously. This paper fills the void and introduces Breadth-First Branch-and-Bound (BFBnB) MRE algorithms base...
متن کاملMean Field Inference in Dependency Networks: An Empirical Study
Dependency networks are a compelling alternative to Bayesian networks for learning joint probability distributions from data and using them to compute probabilities. A dependency network consists of a set of conditional probability distributions, each representing the probability of a single variable given its Markov blanket. Running Gibbs sampling with these conditional distributions produces ...
متن کاملNORTH- HOLLAND Bounded Recursive Decomposition: A Search-Based Method for Belief-Network Inference Under Limited Resources
This paper presents a new inference algorithm for belief networks that combines a search-based algorithm with a simulation-based algorithm. The former is an extension of the recursive decomposition (RD) algorithm proposed by Cooper, which is here modified to compute interval bounds on marginal probabilities. We call the algorithm bounded-RD. The latter is a stochastic simulation method known as...
متن کامل