Shannon entropy of symmetric Pollaczek polynomials
نویسندگان
چکیده
We discuss the asymptotic behavior (as n → ∞) of the entropic integrals En = − ∫ 1 −1 log ( p n (x) ) p n (x)w(x) dx , and Fn = − ∫ 1 −1 log ( p n (x)w(x) ) p n (x)w(x) dx, when w is the symmetric Pollaczek weight on [−1, 1] with main parameter λ ≥ 1, and pn is the corresponding orthonormal polynomial of degree n. It is well known that w does not belong to the Szegő class, which implies in particular that En → −∞. For this sequence we find the first two terms of the asymptotic expansion. Furthermore, we show that Fn → log(π) − 1, proving that this “universal behavior” extends beyond the Szegő class. The asymptotics of En has also a curious interpretation in terms of the mutual energy of two relevant sequences of measures associated with pn’s.
منابع مشابه
Biorthogonal Expansion of Non-Symmetric Jack Functions⋆
We find a biorthogonal expansion of the Cayley transform of the non-symmetric Jack functions in terms of the non-symmetric Jack polynomials, the coefficients being Meixner–Pollaczek type polynomials. This is done by computing the Cherednik–Opdam transform of the non-symmetric Jack polynomials multiplied by the exponential function.
متن کاملTur/.n Inequalities for Symmetric Orthogonal Polynomials
A method is outlined to express a Tur,n determinant of solutions of a three term recurrence relation as a weighted sum of squares. This method is shown to imply the positivity of Tur determinants of symmetric Pollaczek polynomials, Lommel polynomials and q-Bessel functions.
متن کاملMultiple Meixner-Pollaczek polynomials and the six-vertex model
We study multiple orthogonal polynomials of Meixner-Pollaczek type with respect to a symmetric system of two orthogonality measures. Our main result is that the limiting distribution of the zeros of these polynomials is one component of the solution to a constrained vector equilibrium problem. We also provide a Rodrigues formula and closed expressions for the recurrence coefficients. The proof ...
متن کاملClassical Orthogonal Polynomials as Moments
We show that the Meixner, Pollaczek, Meixner-Pollaczek and Al-Salam-Chihara polynomials, in certain normalization, are moments of probability measures. We use this fact to derive bilinear and multilinear generating functions for some of these polynomials. We also comment on the corresponding formulas for the Charlier, Hermite and Laguerre polynomials. Running Title: Generating Functions
متن کاملWeighted Derangements and the Linearization Coefficients of Orthogonal Sheffer Polynomials
The present paper is devoted to a systematic study of the combinatorial interpretations of the moments and the linearization coefficients of the orthogonal Sheffer polynomials, i.e., Hermite, Charlier, Laguerre, Meixner and Meixner-Pollaczek polynomials. In particular, we show that Viennot's combinatorial interpretations of the moments can be derived directly from their classical analytical exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Approximation Theory
دوره 145 شماره
صفحات -
تاریخ انتشار 2007