Comparison-Based Nearest Neighbor Search
نویسندگان
چکیده
We consider machine learning in a comparison-based setting where we are given a set of points in a metric space, but we have no access to the actual distances between the points. Instead, we can only ask an oracle whether the distance between two points i and j is smaller than the distance between the points i and k. We are concerned with data structures and algorithms to find nearest neighbors based on such comparisons. We focus on a simple yet effective algorithm that recursively splits the space by first selecting two random pivot points and then assigning all other points to the closer of the two (comparison tree). We prove that if the metric space satisfies certain expansion conditions, then with high probability the height of the comparison tree is logarithmic in the number of points, leading to efficient search performance. We also provide an upper bound for the failure probability to return the true nearest neighbor. Experiments show that the comparison tree is competitive with algorithms that have access to the actual distance values, and needs less triplet comparisons than other competitors.
منابع مشابه
An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملEdge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کاملEdge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کاملA Comparison of Graph Construction and Learning Algorithms for Graph-Based Phonetic Classification
Graph-based semi-supervised learning (SSL) algorithms have been widely applied in large-scale machine learning. In this work, we show different graph-based SSL methods (modified adsorption, measure propagation, and prior-based measure propagation) and compare them to the standard label propagation algorithm on a phonetic classification task. In addition, we compare 4 different ways of construct...
متن کاملyaImpute: An R Package for kNN Imputation
This article introduces yaImpute, an R package for nearest neighbor search and imputation. Although nearest neighbor imputation is used in a host of disciplines, the methods implemented in the yaImpute package are tailored to imputation-based forest attribute estimation and mapping. The impetus to writing the yaImpute is a growing interest in nearest neighbor imputation methods for spatially ex...
متن کامل