Enhanced angiogenesis by transplantation of mesenchymal stem cell sheet created by a novel magnetic tissue engineering method.

نویسندگان

  • Masakazu Ishii
  • Rei Shibata
  • Yasushi Numaguchi
  • Tetsutaro Kito
  • Hirohiko Suzuki
  • Kazunori Shimizu
  • Akira Ito
  • Hiroyuki Honda
  • Toyoaki Murohara
چکیده

OBJECTIVE Therapeutic angiogenesis with cell transplantation represents a novel strategy for severe ischemic diseases. However, some patients have poor response to such conventional injection-based angiogenic cell therapy. Here, we investigated a therapeutic potential of mesenchymal stem cell (MSC) sheet created by a novel magnetite tissue engineering technology for reparative angiogenesis. METHODS AND RESULTS Human MSCs incubated with magnetic nanoparticle-containing liposomes were cultured, and a magnet was placed on the reverse side. Magnetized MSCs formed multilayered cell sheets according to magnetic force. Nude mice were subjected to unilateral hind limb ischemia and separated into 3 groups. For the control group, saline was injected into ischemic tissue. In the MSC-injected group, mice received magnetized MSCs by conventional needle injections without sheet formula as a control cell group. In the MSC-sheet group, MSC sheet was layered onto the ischemic tissues before skin closure. Blood flow recovery and the extent of angiogenesis were assessed by a laser Doppler blood flowmetry and histological capillary density, respectively. The MSC-sheet group had a greater angiogenesis in ischemic tissues compared to the control and MSC-injected groups. The angiogenic and tissue-preserving effects of MSC sheets were attributable to an increased expression of vascular endothelial growth factor and reduced apoptosis in ischemic tissues. In cultured MSCs, magnetic labeling itself inhibited apoptosis via a catalase-like antioxidative mechanism. CONCLUSIONS MSC sheet created by the novel magnetic nanoparticle-based tissue engineering technology would represent a new modality for therapeutic angiogenesis and tissue regeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

iPS cell sheets created by a novel magnetite tissue engineering method for reparative angiogenesis

Angiogenic cell therapy represents a novel strategy for ischemic diseases, but some patients show poor responses. We investigated the therapeutic potential of an induced pluripotent stem (iPS) cell sheet created by a novel magnetite tissue engineering technology (Mag-TE) for reparative angiogenesis. Mouse iPS cell-derived Flk-1(+) cells were incubated with magnetic nanoparticle-containing lipos...

متن کامل

Design and Fabrication of a Novel Transplant Combined with Human Bone Marrow Mesenchymal Stem Cells and Platelet-rich Fibrin: New Horizons for Periodontal Tissue Regeneration after Dental Trauma

Avulsed teeth that are replanted dried are more prone to loss. Recent tissue engineering studies focus onfabrication of various cell delivery systems to improve the overall prognosis of such teeth. To evaluate this newcell transplant method, we initially aimed at designing of PRF scaffold and determining BMMSCs viabilityand function on the fabricated scaffold. To test this concept in-vitro, hum...

متن کامل

Design and Fabrication of a Novel Transplant Combined with Human Bone Marrow Mesenchymal Stem Cells and Platelet-rich Fibrin: New Horizons for Periodontal Tissue Regeneration after Dental Trauma

Avulsed teeth that are replanted dried are more prone to loss. Recent tissue engineering studies focus onfabrication of various cell delivery systems to improve the overall prognosis of such teeth. To evaluate this newcell transplant method, we initially aimed at designing of PRF scaffold and determining BMMSCs viabilityand function on the fabricated scaffold. To test this concept in-vitro, hum...

متن کامل

Human Olfactory Ecto-mesenchymal Stem Cells Displaying Schwann-Cell-Like Phenotypes and Promoting Neurite Outgrowth in Vitro

Strategies of Schwann cell (SC) transplantation to regenerate the peripheral nerve injury involves many limitations. Stem cells can be used as alternative cell sources for differentiation into SCs. Given the high potential of neural crest-derived stem cells for the generation of multiple cell lineages, in this research, we considered whether olfactory ecto-mesenchymal stem cells (OE-MSCs) derive...

متن کامل

Cell sheet transplantation of cultured mesenchymal stem cells enhances bone formation in a rat nonunion model.

Orthopedic surgeons have long been troubled by cases involving nonunion of fractured bones. This study aimed to enhance bone union by cell sheet transplantation of mesenchymal stem cells. A nonunion model was made in rat femur, and rat bone marrow cells were cultured in medium containing dexamethasone and ascorbic acid phosphate to create a cell sheet that could be scraped off as a single sheet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 31 10  شماره 

صفحات  -

تاریخ انتشار 2011