Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model.
نویسندگان
چکیده
Laser thermal injury and subsequent wound healing in organotypic, skin-equivalent tissue models were monitored using optical coherence tomography (OCT), multiphoton microscopy (MPM), and histopathology. The in vitro skin-equivalent raft tissue model was composed of dermis with type I collagen and fibroblast cells and epidermis of differentiated keratinocytes. Noninvasive optical imaging techniques were used for time-dependent, serial measurements of matrix destruction and reconstruction and compared with histopathology. The region of laser thermal injury was clearly delineated in OCT images by low signal intensity. High resolution MPM imaging using second-harmonic generation revealed alterations in collagen microstructure organization with subsequent matrix reconstruction. Fibroblast cell migration in response to injury was monitored by MPM using two-photon excited fluorescence. This study illustrates the complementary features of linear and nonlinear light-tissue interaction in intrinsic signal optical imaging and their use for noninvasive, serial monitoring of wound healing processes in biological tissues.
منابع مشابه
Enhancement of Wound Healing by Non-Thermal N2/Ar Micro-Plasma Exposure in Mice with Fractional-CO2-Laser-Induced Wounds
Micro-plasma is a possible alternative treatment for wound management. The effect of micro-plasma on wound healing depends on its composition and temperature. The authors previously developed a capillary-tube-based micro-plasma system that can generate micro-plasma with a high nitric oxide-containing species composition and mild working temperature. Here, the efficacy of micro-plasma treatment ...
متن کاملModeling aberrant wound healing using tissue-engineered skin constructs and multiphoton microscopy.
BACKGROUND Keloids and hypertrophic scars result from aberrant wound healing and remain a potential complication of any surgical procedure or trauma. Investigation of aberrant wound healing has been limited to the study of growth factors, collagen precursors, and DNA synthesis in simple in vitro systems, which necessitate removal or destruction of cells or factors in the growth environment of c...
متن کاملOptical Coherence Tomography for In Vitro Monitoring of Wound Healing After Laser Irradiation
We demonstrate a novel application of optical coherence tomography (OCT) to monitor post-laser irradiation collagen injury in model skin. An artificial skin model (RAFT), which closely approximates human skin, was irradiated with a Perovskite laser ( = 1341 nm), which is under investigation for potential use as a nonablative laser skin rejuvenation device (NALSR). OCT was used to determine the ...
متن کاملPlastinated tissue samples as three-dimensional models for optical instrument characterization.
Histology of biological specimens is largely limited to investigating two-dimensional structure because of the sectioning required to produce optically thin samples for conventional microscopy. With the advent of three-dimensional optical imaging technologies such as optical coherence tomography (OCT), diffuse optical tomography (DOT), and multiphoton microscopy (MPM), methods of tissue prepara...
متن کاملDevelopment of an Advanced Optical Coherence Tomography System for Radiation Dosimetry
Introduction: According to the literature, optical coherence tomography (OCT) can be used measure radiation absorbed dose. This study was carried out to design a computed tomography system for the calculation of absorbed dose and optimization of dose delivery in radiotherapy using gel dosimeters. Material and Methods: An advanced charge-coupled device based OCT system was developed in laborator...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 9 2 شماره
صفحات -
تاریخ انتشار 2004