The Cycle Polynomial of a Permutation Group

نویسندگان

  • Peter J. Cameron
  • Jason Semeraro
چکیده

The cycle polynomial of a finite permutation group G is the generating function for the number of elements of G with a given number of cycles:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation of the cycle index polynomial of a Permutation Group CS497-report

Computing cycle index polynomial of a permutation group is known to be #P -complete. In this report we give some introduction to the problem and describe some permutation groups for which the computation of cycle index polynomial is easy.

متن کامل

On the tenacity of cycle permutation graph

A special class of cubic graphs are the cycle permutation graphs. A cycle permutation graph Pn(α) is defined by taking two vertex-disjoint cycles on n vertices and adding a matching between the vertices of the two cycles.In this paper we determine a good upper bound for tenacity of cycle permutation graphs.

متن کامل

Polynomial aspects of codes, matroids and permutation groups

Index 74 Preface The three subjects of the title (codes, matroids, and permutation groups) have many interconnections. In particular, in each case, there is a polynomial which captures a lot of information about the structure: we have the weight enumerator of a code, the Tutte polynomial (or rank polynomial) of a matroid, and the cycle index of a permutation group. With any code is associated a...

متن کامل

Cycle index generalises weight enumerator

With every linear code is associated a permutation group whose cycle index is the weight enumerator of the code (up to normalisation). There is a class of permutation groups (the IBIS groups) which includes the groups obtained from codes as above. With every IBIS group is associated a matroid; in the case of a code group, the matroid differs only trivially from that which arises from the code. ...

متن کامل

Cycle Index, Weight Enumerator, and Tutte Polynomial

With every linear code is associated a permutation group whose cycle index is the weight enumerator of the code (up to a trivial normalisation). There is a class of permutation groups (the IBIS groups) which includes the groups obtained from codes as above. With every IBIS group is associated a matroid; in the case of a group from a code, the matroid differs only trivially from that which arise...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2018