Balancing accuracy, complexity and interpretability in consumer credit decision making: A C-TOPSIS classification approach

نویسندگان

  • Xiaoqian Zhu
  • Jianping Li
  • Dengsheng Wu
  • Haiyan Wang
  • Changzhi Liang
چکیده

Accuracy, complexity and interpretability are very important in credit classification. However, most approaches cannot perform well in all the three aspects simultaneously. The objective of this study is to put forward a classification approach named C-TOPSIS that can balance the three aspects well. C-TOPSIS is based on the rationale of TOPSIS (Technique for Order Preference by Similarity to Ideal Solution). TOPSIS is famous for reliable evaluation results and quick computing process and it is easy to understand and use. However, it is a ranking approach and three challenges have to be faced for modifying TOPSIS into a classification approach. C-TOPSIS works out three strategies to overcome the challenges and retains the advantages of TOPSIS. So C-TOPSIS is deduced to have reliable classification results, high computational efficiency and ease of use and understanding. Our findings in the experiment verify the advantages of C-TOPSIS. In comparison with 7 popular approaches on 2 widely used UCI credit datasets, C-TOPSIS ranks 2nd in accuracy, 1st in complexity and is in 1st rank in interpretability. Only C-TOPSIS ranks among the top 3 in all the three aspects, which verifies that C-TOPSIS can balance accuracy, complexity and interpretability well. 2013 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection

Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...

متن کامل

The New Method for Credit Customer Selecting by Integration of A2 and Data Envelopment Analysis (A2_DEA)

This paper develops a decision support tool using an A2 method and data envelopment analysis (DEA) approach (A2-DEA). This new method is applied for the bank credit customer selection problem and credit scoring as a pilot survey at Export Development Bank of Iran. The proposed method has led to fewer calculations, faster and more accurate decision making, less complexity, and ability to ana...

متن کامل

Assessment of distance-based multi-attribute group decision-making methods from a maintenance strategy perspective

Maintenance has been acknowledged by industrial management as a significant influencing factor of plant performance. Effective plant maintenance can be realized by developing a proper maintenance strategy. However, selecting an appropriate maintenance strategy is difficult because maintenance is a non-repetitive task such as production activity. Maintenance also does not leave a consistent trac...

متن کامل

Religion and Family Structure: Two Factors Affecting on Consumer Decision Making Styles in Iran

Purpose- The aim of this essay is to attempt to explain the impact of religion and family structure on consumer decision-making style within a Muslim country. This paper wants to demonstrate how and why husbands/wives with Eastern culture and Islamic norms use different decision-making styles. Design/methodology/approach- Literature reviews on consumer decision-making, religion and family struc...

متن کامل

TOPSIS Based Multi-Criteria Decision Making of Feature Selection Techniques for Network Traffic Dataset

Intrusion detection systems (IDS) have to process millions of packets with many features, which delay the detection of anomalies. Sampling and feature selection may be used to reduce computation time and hence minimizing intrusion detection time. This paper aims to suggest some feature selection algorithm on the basis of The Technique for Order of Preference by Similarity to Ideal Solution (TOP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Knowl.-Based Syst.

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2013