Sweeping Surface Generated by a Class of Generalized Quasi-cubic Interpolation Spline
نویسندگان
چکیده
In this paper we present a new method for the model of interpolation sweep surfaces by the C-continuous generalized quasicubic interpolation spline. Once given some key position, orientation and some points which are passed through by the spine and initial cross-section curves, the corresponding sweep surface can be constructed by the introduced spline function without calculating control points inversely as in the cases of B-spline and Bézier methods or solving equation system as in the case of cubic polynomial interpolation spline. A local control technique is also proposed for sweep surfaces using scaling function, which allows the user to change the shape of an object intuitively and effectively. On the basis of these results, some examples are given to show how the method is used to model some interesting surfaces.
منابع مشابه
Rational approximation of rotation minimizing frames using Pythagorean–hodograph cubics
This article is devoted to the rotation minimizing frames that are associated with spatial curves. Firstly we summarize some results concerning the differential geometry of the sweeping surfaces which are generated by these frames (the so–called profile or moulding surfaces). In the second part of the article we describe a rational approximation scheme. This scheme is based on the use of spatia...
متن کاملComputing the range of values of real functions using B-spline form
In this paper, we present an easy and e cient method for computing the range of a function by using spline quasi-interpolation. We exploit the close relationship between the spline function and its control polygon and use tight subdivision technique in order to obtain monotonic splines which make the range of the spline easy to compute. The proposed method is useful in case of given scattered d...
متن کاملPiecewise cubic interpolation of fuzzy data based on B-spline basis functions
In this paper fuzzy piecewise cubic interpolation is constructed for fuzzy data based on B-spline basis functions. We add two new additional conditions which guarantee uniqueness of fuzzy B-spline interpolation.Other conditions are imposed on the interpolation data to guarantee that the interpolation function to be a well-defined fuzzy function. Finally some examples are given to illustrate the...
متن کاملOn a Generalization of Cubic Spline Interpolation
Based on analysis of basic cubic spline interpolation, the clamped cubic spline interpolation is generalized in this paper. The methods are presented on the condition that the first derivative and second derivative of arbitrary node are given. The Clamped spline and Curvature-adjusted cubic spline are also generalized. The methods are presented on the condition that the first derivatives of arb...
متن کاملA Generalized Scheme for the Interpolation of Arbitrarily Intersecting Curves by Catmull-Clark Subdivision Surfaces
This paper presents a scheme for interpolating intersecting uniform cubic B-spline curves by Catmull-Clark subdivision surfaces. The curves are represented by polygonal complexes and the neighborhoods of intersection points are modeled by X-Configurations. When these structures are embedded within a control polyhedron, the corresponding curves will automatically be interpolated by the surface l...
متن کامل