Recursive POD expansion for reaction-diffusion equation

نویسندگان

  • Mejdi Azaïez
  • Faker Ben Belgacem
  • T. Chacón Rebollo
چکیده

This paper focuses on the low-dimensional representation of multivariate functions. We study a recursive POD representation, based upon the use of the power iterate algorithm to recursively expand the modes retained in the previous step. We obtain general error estimates for the truncated expansion, and prove that the recursive POD representation provides a quasi-optimal approximation in L2 norm. We also prove an exponential rate of convergence, when applied to the solution of the reaction-diffusion partial differential equation. Some relevant numerical experiments show that the recursive POD is computationally more accurate than the Proper Generalized Decomposition for multivariate functions. We also recover the theoretical exponential convergence rate for the solution of the reaction-diffusion equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local improvements to reduced-order approximations of optimal control problems governed by diffusion-convection-reaction equation

We consider the optimal control problem governed by diffusion convection reaction equation without control constraints. The proper orthogonal decomposition(POD) method is used to reduce the dimension of the problem. The POD method may be lack of accuracy if the POD basis depending on a set of parameters is used to approximate the problem depending on a different set of parameters. We are intere...

متن کامل

A Closed-Form Solution for Two-Dimensional Diffusion Equation Using Crank-Nicolson Finite Difference Method

In this paper a finite difference method for solving 2-dimensional diffusion equation is presented. The method employs Crank-Nicolson scheme to improve finite difference formulation and its convergence and stability. The obtained solution will be a recursive formula in each step of which a system of linear equations should be solved. Given the specific form of obtained matrices, rather than sol...

متن کامل

Pullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains

At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.

متن کامل

A numerical investigation of a reaction-diffusion equation arises from an ecological phenomenon

This paper deals with the numerical solution of a class of reaction diffusion equations arises from ecological phenomena. When two species are introduced into unoccupied habitat, they can spread across the environment as two travelling waves with the wave of the faster reproducer moving ahead of the slower.The mathematical modelling of invasions of species in more complex settings that include ...

متن کامل

A Comparison Between Fourier Transform Adomian Decomposition Method and Homotopy Perturbation ethod for Linear and Non-Linear Newell-Whitehead-Segel Equations

In this paper, a comparison among the hybrid of Fourier Transform and AdomianDecomposition Method (FTADM) and Homotopy Perturbation Method (HPM) is investigated.The linear and non-linear Newell-Whitehead-Segel (NWS) equations are solved and the results arecompared with the exact solution. The comparison reveals that for the same number of componentsof recursive sequences, the error of FTADM is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. Model. and Simul. in Eng. Sciences

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2016