Inverse Optimal Control with Linearly-Solvable MDPs

نویسندگان

  • Krishnamurthy Dvijotham
  • Emanuel Todorov
چکیده

We present new algorithms for inverse optimal control (or inverse reinforcement learning, IRL) within the framework of linearlysolvable MDPs (LMDPs). Unlike most prior IRL algorithms which recover only the control policy of the expert, we recover the policy, the value function and the cost function. This is possible because here the cost and value functions are uniquely defined given the policy. Despite these special properties, we can handle a wide variety of problems such as the grid worlds popular in RL and most of the nonlinear problems arising in robotics and control engineering. Direct comparisons to prior IRL algorithms show that our new algorithms provide more information and are orders of magnitude faster. Indeed our fastest algorithm is the first inverse algorithm which does not require solving the forward problem; instead it performs unconstrained optimization of a convex and easy-to-compute log-likelihood. Our work also sheds light on the recent Maximum Entropy (MaxEntIRL) algorithm, which was defined in terms of density estimation and the corresponding forward problem was left unspecified. We show that MaxEntIRL is inverting an LMDP, using the less efficient of the algorithms derived here. Unlike all prior IRL algorithms which assume pre-existing features, we study feature adaptation and show that such adaptation is essential in continuous state spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Policy gradients in linearly-solvable MDPs

We present policy gradient results within the framework of linearly-solvable MDPs. For the first time, compatible function approximators and natural policy gradients are obtained by estimating the cost-to-go function, rather than the (much larger) state-action advantage function as is necessary in traditional MDPs. We also develop the first compatible function approximators and natural policy g...

متن کامل

Linearly-solvable Markov decision problems

Advances in Neural Information Processing Systems 2006 We introduce a class of MPDs which greatly simplify Reinforcement Learning. They have discrete state spaces and continuous control spaces. The controls have the effect of rescaling the transition probabilities of an underlying Markov chain. A control cost penalizing KL divergence between controlled and uncontrolled transition probabilities ...

متن کامل

Hierarchical Linearly-Solvable Markov Decision Problems

We present a hierarchical reinforcement learning framework that formulates each task in the hierarchy as a special type of Markov decision process for which the Bellman equation is linear and has analytical solution. Problems of this type, called linearly-solvable MDPs (LMDPs) have interesting properties that can be exploited in a hierarchical setting, such as efficient learning of the optimal ...

متن کامل

A Unified Theory of Linearly Solvable Optimal Control

We present a unified theory of Linearly Solvable Optimal Control, that is, a class of optimal control problems whose solution reduces to solving a linear equation (for finite state spaces) or a linear integral equation (for continuous state spaces). The framework presented includes all previous work on linearly solvable optimal control as special cases. It includes both standard control problem...

متن کامل

Linearly Solvable Optimal Control

We summarize the recently-developed framework of linearly-solvable stochastic optimal control. Using an exponential transformation, the (Hamilton-Jacobi) Bellman equation for such problems can bemade linear, giving rise to efficient numericalmethods. Extensions to game theory are also possible and lead to linear Isaacs equations. The key restriction that makes a stochastic optimal control probl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010