Oyster Reefs as Natural Breakwaters Mitigate Shoreline Loss and Facilitate Fisheries
نویسندگان
چکیده
Shorelines at the interface of marine, estuarine and terrestrial biomes are among the most degraded and threatened habitats in the coastal zone because of their sensitivity to sea level rise, storms and increased human utilization. Previous efforts to protect shorelines have largely involved constructing bulkheads and seawalls which can detrimentally affect nearshore habitats. Recently, efforts have shifted towards "living shoreline" approaches that include biogenic breakwater reefs. Our study experimentally tested the efficacy of breakwater reefs constructed of oyster shell for protecting eroding coastal shorelines and their effect on nearshore fish and shellfish communities. Along two different stretches of eroding shoreline, we created replicated pairs of subtidal breakwater reefs and established unaltered reference areas as controls. At both sites we measured shoreline and bathymetric change and quantified oyster recruitment, fish and mobile macro-invertebrate abundances. Breakwater reef treatments mitigated shoreline retreat by more than 40% at one site, but overall vegetation retreat and erosion rates were high across all treatments and at both sites. Oyster settlement and subsequent survival were observed at both sites, with mean adult densities reaching more than eighty oysters m(-2) at one site. We found the corridor between intertidal marsh and oyster reef breakwaters supported higher abundances and different communities of fishes than control plots without oyster reef habitat. Among the fishes and mobile invertebrates that appeared to be strongly enhanced were several economically-important species. Blue crabs (Callinectes sapidus) were the most clearly enhanced (+297%) by the presence of breakwater reefs, while red drum (Sciaenops ocellatus) (+108%), spotted seatrout (Cynoscion nebulosus) (+88%) and flounder (Paralichthys sp.) (+79%) also benefited. Although the vertical relief of the breakwater reefs was reduced over the course of our study and this compromised the shoreline protection capacity, the observed habitat value demonstrates ecological justification for future, more robust shoreline protection projects.
منابع مشابه
Modeling the Effects of Oyster Reefs and Breakwaters on Seagrass Growth
Seagrass beds have declined in Chesapeake Bay, USA as well as worldwide over the past century. Increased seston concentrations, which decrease light penetration, are likely one of themain causes of the decline in ChesapeakeBay. It has been hypothesized that dense populations of suspensionfeeding bivalves, such as eastern oysters (Crassostrea virginica), may filter sufficient seston from the wat...
متن کاملAssessing shoreline exposure and oyster habitat suitability maximizes potential success for sustainable shoreline protection using restored oyster reefs
Oyster reefs provide valuable ecosystem services that contribute to coastal resilience. Unfortunately, many reefs have been degraded or removed completely, and there are increased efforts to restore oysters in many coastal areas. In particular, much attention has recently been given to the restoration of shellfish reefs along eroding shorelines to reduce erosion. Such fringing reef approaches, ...
متن کاملFreshwater Detention by Oyster Reefs: Quantifying a Keystone Ecosystem Service
Oyster reefs provide myriad ecosystem services, including water quality improvement, fisheries and other faunal support, shoreline protection from erosion and storm surge, and economic productivity. However, their role in directing flow during non-storm conditions has been largely neglected. In regions where oyster reefs form near the mouth of estuarine rivers, they likely alter ocean-estuary e...
متن کاملEcological value of submerged breakwaters for habitat enhancement on a residential scale.
Estuarine shorelines have been degraded since humans arrived in the coastal zone. In recent history, a major cause of habitat degradation has been the armoring of shorelines with vertical walls to protect property from erosive wave energy; however, a lack of practical alternatives that maintain or enhance ecological function has limited the options of waterfront residents and coastal zone manag...
متن کاملLiving oysters and their shells as sites of nitrification and denitrification.
Oysters provide a critical habitat, are a food resource for higher trophic levels and support important commercial fisheries throughout the world. Oyster reefs can improve water quality by removing phytoplankton. While sediment denitrification may be enhanced adjacent to oyster reefs, little is known about nitrification and denitrification associated with living oysters and their shells. We mea...
متن کامل