Calibration of an orientation sensor for freehand 3D ultrasound and its use in a hybrid acquisition system
نویسندگان
چکیده
BACKGROUND Freehand 3D ultrasound is a powerful imaging modality with many potential applications. However, its reliance on add-on position sensors, which can be expensive, obtrusive and difficult to calibrate, is a major drawback. Alternatively, freehand 3D ultrasound can be acquired without a position sensor using image-based techniques. Sensorless reconstructions exhibit good fine scale detail but are prone to tracking drift, resulting in large scale geometrical distortions. METHOD We investigate an alternative position sensor, the Xsens MT9-B, which is relatively unobtrusive but measures orientation only. We describe a straightforward approach to calibrating the sensor, and we measure the calibration precision (by repeated calibrations) and the orientation accuracy (using independent orientation measurements). We introduce algorithms that allow the MT9-B potentially to correct both linear and angular drift in sensorless reconstructions. RESULTS The MT9-B can be calibrated to a precision of around 1 degrees . Reconstruction accuracy is also around 1 degrees . The MT9-B was able to eliminate angular drift in sensorless reconstructions, though it had little impact on linear drift. In comparison, six degree-of-freedom drift correction was shown to produce excellent reconstructions. CONCLUSION Gold standard freehand 3D ultrasound acquisition requires the synthesis of image-based techniques, for good fine scale detail, and position sensors, for good large scale geometrical accuracy. A hybrid system incorporating the MT9-B offers an attractive compromise between quality and ease of use. The position sensor is unobtrusive and the system is capable of faithful acquisition, with the one exception of linear drift in the elevational direction.
منابع مشابه
Ultrasound Guided Surgery: Image Processing and Navigation
The process of 3D freehand ultrasound acquisition consists of two steps: scanning and reconstruction. Prior to scanning, a position sensor is attached to the probe for tagging each image with its position and orientation in space. A crucial step prior to reconstruction and visualization is calibration of the ultrasound probe with the attached position sensor, i.e. determining the position and o...
متن کاملImage-Based Method for In-Vivo Freehand Ultrasound Calibration
For freehand ultrasound systems, a calibration method is necessary to locate the position and orientation of a 2D B-mode ultrasound image plane with respect to a position sensor attached to the transducer. In addition, the acquisition time discrepancy between the position measurements and the image frames has the be computed. We developed a new method that adresses both of these problems, based...
متن کاملRobust and Automatic Calibration Method for 3D Freehand Ultrasound
This paper describes a new robust and fully automatic method for calibration of three-dimensional (3D) freehand ultrasound. 3D Freehand ultrasound consists in mounting a position sensor on a standard probe. The echographic B-scans can be localized in 3D, and can be compounded into a volume. However, especially for quantitative use, this process dramatically requires a calibration procedure that...
متن کاملUltrasound Calibration Toolkit with a High-Adjustability Feature Based on User Requirements
3D freehand Ultrasound reconstruction is one of many choices to assemble 3D ultrasound volume from 2D ultrasound images with benefit in low-cost operations, conveniency and ease of usage which can be applied to intraoperative imaging. Ultrasound calibration is the procedure used to find the position and orientation of each acquired 2D ultrasound image in 3D space, hence is needed to be performe...
متن کاملA fully automatic calibration procedure for freehand 3D ultrasound
This paper describes a novel method for calibration of freehand three-dimensional (3D) ultrasound. A position sensor is mounted on a conventional ultrasound probe, thus the set of B-scans can be localized in 3D, and can be compounded into a volume. The calibration process aims at determining the transformation (translations, rotations, scaling) between the coordinates system of images and the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BioMedical Engineering OnLine
دوره 7 شماره
صفحات -
تاریخ انتشار 2008