Estimates in Corona Theorems for Some Subalgebras of H∞ Amol Sasane and Sergei Treil

نویسندگان

  • AMOL SASANE
  • SERGEI TREIL
چکیده

If n is a nonnegative integer, then denote by ∂H the space of all complex valued functions f defined on D such that f, f , f , . . . , f (n) belong to H∞, with the norm

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contractibility of the Maximal Ideal Space of Algebras of Measures in a Half-space

H [n] = {(t1, . . . , tn) ∈ R n \ {0} | ∀j, [tj 6= 0 and t1 = t2 = · · · = tj−1 = 0] ⇒ tj > 0} ∪ {0}. LetM(H) denote the Banach algebra of all complex Borel measures with support contained in H, with the usual addition and scalar multiplication, and with convolution ∗, and the norm being the total variation of μ. It is shown that the maximal ideal space X(M(H)) of M(H), equipped with the Gelfan...

متن کامل

Irrational transfer function classes, coprime factorization and stabilization

Abstract. Classes of irrational function classes, denoted by AS, that lie between the extreme cases of the disk algebra A and the Hardy space H∞(D), are considered. The corona theorem holds for AS, and the following properties are shown: AS is an integral domain, but not a Bézout domain, AS is a Hermite ring with stable rank 1, and the Banach algebra AS has topological stable rank 2. Consequenc...

متن کامل

Analytic Projections, Corona Problem and Geometry of Holomorphic Vector Bundles

The main result of the paper is the theorem giving a sufficient condition for the existence of a bounded analytic projection onto a holomorphic family of (generally infinite-dimensional) subspaces (a holomorphic sub-bundle of a trivial bundle). This sufficient condition is also necessary in the case of finite dimension or codimension of the bundle. A simple lemma of N. Nikolski connects the exi...

متن کامل

Lower Bounds in the Matrix Corona Theorem and the Codimension One Conjecture

Main result of this paper is the following theorem: given δ, 0 < δ < 1/3 and n ∈ N there exists an (n + 1) × n inner matrix function F ∈ H∞ (n+1)×n such that I ≥ F ∗(z)F (z) ≥ δI ∀z ∈ D, but the norm of any left inverse for F is at least [δ/(1−δ)]−n ≥ (2δ). This gives a lower bound for the solution of the Matrix Corona Problem, which is pretty close to the best known upper b bound C · δ−n−1 log...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006