Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering.
نویسندگان
چکیده
The fracture of bones and large bone defects owing to various traumas or natural ageing is a typical type of tissue malfunction. Surgical treatment frequently requires implantation of a temporary or permanent prosthesis, which is still a challenge for orthopaedic surgeons, especially in the case of large bone defects. Mimicking nanotopography of natural extracellular matrix (ECM) is advantageous for the successful regeneration of damaged tissues or organs. Electrospun nanofibre-based synthetic and natural polymer scaffolds are being explored as a scaffold similar to natural ECM for tissue engineering applications. Nanostructured materials are smaller in size falling, in the 1-100 nm range, and have specific properties and functions related to the size of the natural materials (e.g. hydroxyapatite (HA)). The development of nanofibres with nano-HA has enhanced the scope of fabricating scaffolds to mimic the architecture of natural bone tissue. Nanofibrous substrates supporting adhesion, proliferation, differentiation of cells and HA induce the cells to secrete ECM for mineralization to form bone in bone tissue engineering. Our laboratory (NUSNNI, NUS) has been fabricating a variety of synthetic and natural polymer-based nanofibrous substrates and synthesizing HA for blending and spraying on nanofibres for generating artificial ECM for bone tissue regeneration. The present review is intended to direct the reader's attention to the important subjects of synthetic and natural polymers with HA for bone tissue engineering.
منابع مشابه
PLLA/HA Nano composite scaffolds for stem cell proliferation and differentiation in tissue engineering
Abstract Due to their mulitpotency, Mesenchymal stem cells (MSCs), have the ability to proliferate and differentiate into multiple mesodermal tissues. The aim of this study was to isolate MSCs from human Umbilical Cord (hUCMSCs) to determine their osteogenic potential on nanofibrous scaffolds. To this end, Poly (L-lactic acid) (PLLA)/Nano hydroxyapatite (HA) composite nanofibrous scaffolds were...
متن کاملElectrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering
In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...
متن کاملElectrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering
In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...
متن کاملPoly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering.
Poly(lactide-co-glycolide) (PLGA) nanofibrous composite scaffolds having nano-hydroxyapatite particles (HAp) in the fibers were prepared by electrospinning of PLGA and HAp with an average diameter of 266.6 ± 7.3 nm. Microscopy and spectroscopy characterizations confirmed integration of the crystalline HAp in the scaffolds. Agglomerates gradually appeared and increased on the fiber surface along...
متن کاملInnovative biodegradable poly(L-lactide)/collagen/hydroxyapatite composite fibrous scaffolds promote osteoblastic proliferation and differentiation
The development of an artificial bone graft which can promote the regeneration of fractures or diseased bones is currently the most challenging aspect in bone tissue engineering. To achieve the purpose of promoting bone proliferation and differentiation, the artificial graft needs have a similar structure and composition of extracellular matrix. One-step electrospinning method of biocomposite n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 368 1917 شماره
صفحات -
تاریخ انتشار 2010