Homocysteine induces 3-hydroxy-3-methylglutaryl coenzyme a reductase in vascular endothelial cells: a mechanism for development of atherosclerosis?
نویسندگان
چکیده
BACKGROUND It has been established that hyperhomocyst(e)inemia (HHCy) is an independent and graded risk factor for atherosclerosis, although the molecular link to the atherosclerotic process remains obscure. METHODS AND RESULTS Screening human umbilical vein endothelial cells (HUVECs) with complementary DNA microarray for the gene expression modified by homocysteine (Hcy) revealed that 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) was upregulated. This effect was confirmed using quantitative reverse transcriptase-polymerase chain reaction. Actinomycin D studies revealed that Hcy stabilized HMGCR mRNA (tau(1/2), 9.5 +/- 1.0 versus 5.0 +/- 0.2 hours). Expression of immunodetectable HMGCR in both HUVECs and renal microvascular endothelial cells was increased in Hcy-treated cells in association with the increased abundance of caveolin. Application of a cell-permeable superoxide dismutase mimetic, Mn-TBAP, reversed the Hcy-induced expression of HMGCR. Additional biochemical analysis of the abundance of total cellular cholesterol showed that 0, 20, 50, and 100 micromol/L Hcy resulted in 22.2 +/- 7.3%, 39.5 +/- 1.2%, and 50.4 +/- 6.8% increase, respectively. Gas chromatography mass spectrometry analysis of extracted cholesterol from Hcy-treated HUVECs and from the culture medium showed 17.8 +/- 5.2% and 24.0 +/- 14.5% increases, respectively. Application of simvastatin to Hcy-treated cells reduced cellular cholesterol and prevented Hcy-induced suppression of NO production by HUVECs in a dose-dependent manner. CONCLUSIONS Using a cDNA microarray, the data disclosed an unexpected link between Hcy and cholesterol dysregulation based on the finding of increased abundance of HMGCR mRNA and protein in endothelial cells, demonstrated the possible role of Hcy-induced oxidative stress in this response, and revealed the improvement of endothelial NO production in Hcy-treated HUVECs by statins. Collectively, these findings may provide a solid explanation for the observed proatherogenic effect of HHcy.
منابع مشابه
Bone marrow-derived progenitor cells modulate vascular reendothelialization and neointimal formation: effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition.
OBJECTIVE Atherosclerosis and restenosis after vascular injury are both characterized by endothelial dysfunction, apoptosis, inappropriate endothelialization, and neointimal formation. Bone marrow-derived endothelial progenitor cells have been implicated in neovascularization, resulting in adult blood vessel formation. Despite the anticipated stem cell plasticity, the role of bone marrow-derive...
متن کاملHMG-CoA reductase inhibitors inhibit endothelial exocytosis and decrease myocardial infarct size.
Three-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors protect the vasculature from inflammation and atherosclerosis by cholesterol dependent and cholesterol independent mechanisms. We hypothesized that HMG-CoA reductase inhibitors decrease exocytosis of Weibel-Palade bodies, endothelial cell granules whose contents promote thrombosis and vascular inflammation. We pretreated h...
متن کامل3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors interfere with angiogenesis by inhibiting the geranylgeranylation of RhoA.
Angiogenesis is implicated in the pathogenesis of cancer, rheumatoid arthritis, and atherosclerosis and in the treatment of coronary artery and peripheral vascular disease. Here, cholesterol-lowering agents, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, are shown to interfere with angiogenesis. In vivo, the HMG-CoA reductase inhibitor simvastatin dose-dependently inhibit...
متن کامل3-hydroxy-3-methylglutaryl coenzyme A reductase-independent inhibition of CD40 expression by atorvastatin in human endothelial cells.
OBJECTIVE 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) exert potent anti-inflammatory effects that are independent of their cholesterol-lowering action. We have investigated the effects of these drugs on cytokine-stimulated CD40 expression in human cultured endothelial cells and monocytes. METHODS AND RESULTS Reverse transcription-polymerase chain reaction an...
متن کاملGlucose increases endothelial-dependent superoxide formation in coronary arteries by NAD(P)H oxidase activation: attenuation by the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor atorvastatin.
Increased vascular superoxide anion (O(2)(-)) formation is essentially involved in the pathophysiology of atherosclerosis. Chronic hyperglycemia induces endothelial dysfunction, probably due to increased formation of reactive oxygen intermediates. However, little is known about the localization, modulators, and molecular mechanisms of vascular O(2)(-) formation during hyperglycemia. In porcine ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 105 9 شماره
صفحات -
تاریخ انتشار 2002