Globalizing Stabilized Sqp by Smooth Primal-dual Exact Penalty Function
نویسندگان
چکیده
An iteration of the stabilized sequential quadratic programming method (sSQP) consists in solving a certain quadratic program in the primal-dual space, regularized in the dual variables. The advantage with respect to the classical sequential quadratic programming (SQP) is that no constraint qualifications are required for fast local convergence (i.e., the problem can be degenerate). In particular, for equality-constrained problems the superlinear rate of convergence is guaranteed under the only assumption that the primal-dual starting point is close enough to a stationary point and a noncritical Lagrange multiplier pair (the latter being weaker than the second-order sufficient optimality condition). However, unlike for SQP, designing natural globally convergent algorithms based on the sSQP idea proved quite a challenge and, currently, there are very few proposals in this direction. For equalityconstrained problems, we suggest to use for the task linesearch for the smooth two-parameter exact penalty function, which is the sum of the Lagrangian with squared penalizations of the violation of the constraints and of the violation of the Lagrangian stationarity with respect to primal variables. Reasonable global convergence properties are established. Moreover, we show that the globalized algorithm preserves the superlinear rate of sSQP under the weak conditions mentioned above. We also present some numerical experience on a set of degenerate test problems.
منابع مشابه
Globalizing Stabilized Sequential Quadratic Programming Method by Smooth Primal-Dual Exact Penalty Function
An iteration of the stabilized sequential quadratic programming method consists in solving a certain quadratic program in the primal-dual space, regularized in the dual variables. The advantage with respect to the classical sequential quadratic programming is that no constraint qualifications are required for fast local convergence (i.e., the problem can be degenerate). In particular, for equal...
متن کاملA New Merit Function and an Sqp Method for Non-strictly Monotone Variational Inequalities
Merit functions utilized to monitor the convergence of sequential quadratic programming (SQP) methods for nonlinear programs and variational inequality problems have in common that they include a penalty function for the explicit constraints, the value of the penalty parameter for which is subject to the requirement of being large enough compared to estimates of the optimal Lagrange multipliers...
متن کاملSharp Primal Superlinear Convergence Results for Some Newtonian Methods for Constrained Optimization
As is well known, Q-superlinear or Q-quadratic convergence of the primal-dual sequence generated by an optimization algorithm does not, in general, imply Q-superlinear convergence of the primal part. Primal convergence, however, is often of particular interest. For the sequential quadratic programming (SQP) algorithm, local primal-dual quadratic convergence can be established under the assumpti...
متن کاملA Globally Convergent Stabilized Sqp Method: Superlinear Convergence
Regularized and stabilized sequential quadratic programming (SQP) methods are two classes of methods designed to resolve the numerical and theoretical difficulties associated with ill-posed or degenerate nonlinear optimization problems. Recently, a regularized SQP method has been proposed that allows convergence to points satisfying certain second-order KKT conditions (SIAM J. Optim., 23(4):198...
متن کاملA Globally Convergent Stabilized SQP Method
Sequential quadratic programming (SQP) methods are a popular class of methods for nonlinearly constrained optimization. They are particularly effective for solving a sequence of related problems, such as those arising in mixed-integer nonlinear programming and the optimization of functions subject to differential equation constraints. Recently, there has been considerable interest in the formul...
متن کامل