Structural transformation and tuning behavior induced by the propylamine concentration in hydrogen clathrate hydrates.
نویسندگان
چکیده
The structures and the guest-host distributions of iso-propylamine (i-PA) and n-propylamine (n-PA) hydrates with hydrogen as a secondary guest were identified by powder X-ray diffraction and Raman spectroscopic analysis. The structure of 11.1 mol% i-PA + H2 hydrate was identified to be hexagonal (space group P63/mmc) with a few unindexed diffraction peaks, while 5.6 mol% i-PA + H2 hydrate had a cubic structure (space group Fd3¯m). Similarly, the structure of 13.3 mol% n-PA + H2 hydrate was found to be monoclinic (space group P2(1)/n), while 5.6 mol% n-PA + H2 hydrate had a cubic structure (space group Fd3¯m). The 'tuning' phenomenon, multiple occupancy of hydrogen in the large cage at the pressure and temperature regions outside of pure hydrogen hydrate stability, was observed in the i-PA + H2 hydrate only when the amine concentration was lower than the stoichiometric value of structure II hydrate. The three-phase (H-L(w)-V) equilibria for alkylamine + H2 + water mixtures were also measured to investigate their thermodynamic stability.
منابع مشابه
Multiple guest occupancy in clathrate hydrates and its significance in hydrogen storage.
We report a new concept of structural transformation combined with tuning phenomena which together result in a significant increase in the hydrogen storage capacity in an icy material. It is necessary to investigate the use of a fully water-soluble structure H (sH) former so as to observe how hydrogen molecules are stably loaded into hydrate cages.
متن کاملSpectroscopic identification, thermodynamic stability and molecular composition of hydrogen and 1,4-dioxane binary clathrate hydrate
We present the spectroscopic identification of the binary hydrogen and 1,4-dioxane clathrate hydrates in which H2 molecules are encapsulated in small cages of the structure II hydrate framework. X-ray diffraction, solid-state NMR and Raman spectroscopy were used to confirm the mixed hydrate structure and more importantly the occupancy pattern of hydrogen in clathrate cages. The corresponding pr...
متن کاملMolecular Dynamics Simulations of Guest – Host Hydrogen Bonding in Structure I, Ii, and H Clathrate Hydrates
The standard picture is that clathrate hydrates form when hydrophobic guest molecules are compressed with water under high pressure-low temperature conditions. In the ice-like hydrate framework, water molecules form molecule-sized cavities that encapsulate the guests and minimize water-hydrophobic guest interactions. This picture, however, must be modified by observations that many water solubl...
متن کاملA Fugacity Approach for Prediction of Phase Equilibria of Methane Clathrate Hydrate in Structure H
In this communication, a thermodynamic model is presented to predict the dissociation conditions of structure H (sH) clathrate hydrates with methane as help gas. This approach is an extension of the Klauda and Sandler fugacity model (2000) for prediction of phase boundaries of sI and sII clathrate hydrates. The phase behavior of the water and hydrocarbon system is modeled using the Peng-Robinso...
متن کاملMolecular Hydrogen Storage in Novel Binary Clathrate Hydrates at Near-Ambient Temperatures and Pressures, excerpt from DOE Hydrogen Program 2006 Progress Report
Program Scope Clathrate hydrates are inclusion compounds in which guest molecules occupy the cages formed by a hydrogen-bonded water network [1]. Solid gas clathrate hydrates generally form at high pressures and temperatures near or even above the ice point. Pure hydrogen hydrates have been reported to form cubic structure II hydrates under extreme conditions (200 MPa at 280 K) [2]. We have rec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 3 شماره
صفحات -
تاریخ انتشار 2015