Positively-Charged Semi-Tunnel Is a Structural and Surface Characteristic of Polyphosphate-Binding Proteins: An In-Silico Study
نویسندگان
چکیده
Phosphate is essential for all major life processes, especially energy metabolism and signal transduction. A linear phosphate polymer, polyphosphate (polyP), linked by high-energy phosphoanhydride bonds, can interact with various proteins, playing important roles as an energy source and regulatory factor. However, polyP-binding structures are largely unknown. Here we proposed a putative polyP binding site, a positively-charged semi-tunnel (PCST), identified by surface electrostatics analyses in polyP kinases (PPKs) and many other polyP-related proteins. We found that the PCSTs in varied proteins were folded in different secondary structure compositions. Molecular docking calculations revealed a significant value for binding affinity to polyP in PCST-containing proteins. Utilizing the PCST identified in the β subunit of PPK3, we predicted the potential polyP-binding domain of PPK3. The discovery of this feature facilitates future searches for polyP-binding proteins and discovery of the mechanisms for polyP-binding activities. This should greatly enhance the understanding of the many physiological functions of protein-bound polyP and the involvement of polyP and polyP-binding proteins in various human diseases.
منابع مشابه
In Silico Design and Verification of LAMP-BDNF Chimeric Protein for Presentation of BDNF on the Surface of Exosomes for Drug Delivery Through Blood-Brain Barrier
Background and purpose: The mature form of brain-derived neurotrophic factor (BDNF) binds to BDNF/NT-3 growth factors receptor (Trk-B). This binding leads to activation of Ras–MAPK pathway which is integrated with cell growth and proliferation. The BDNF deficiency is correlated with various diseases and affects aging and miscellaneous. In the present study we aimed to design a chimeric LAMP-BDN...
متن کاملIn silico investigation of lactoferrin protein characterizations for the prediction of anti-microbial properties
Lactoferrin (Lf) is an iron-binding multi-functional glycoprotein which has numerous physiological functions such as iron transportation, anti-microbial activity and immune response. In this study, different in silico approaches were exploited to investigate Lf protein properties in a number of mammalian species. Results showed that the iron-binding site, DNA and RNA-binding sites, signal pepti...
متن کاملPolyphosphate binds with high affinity to exosite II of thrombin.
BACKGROUND Polyphosphate (a linear polymer of inorganic phosphate) is secreted from platelet dense granules, and we recently showed that it accelerates factor V activation by thrombin. OBJECTIVE To examine the interaction of polyphosphate with thrombin. METHODS AND RESULTS Thrombin, but not prothrombin, altered the electrophoretic migration of polyphosphate in gel mobility assays. Thrombin ...
متن کاملEffects of Salinispora derived metabolites against multidrug resistance, an in-silico study
Background: Multidrug resistance (MDR) is known to defeat most chemotherapies as one of the main anticancer strategies. The role of overexpression/overactivation of ABC transporters, especially P-glycoprotein (P-gp), in the development of chemotherapy has long been demonstrated. Salinispora is a marine actinomycete genus known for the production of novel bioactive metabolites. Methods: In this...
متن کاملFunctional Annotation of Two Hypothetical Proteins Reveals Valuable Proteins Involved in Response to Salinity: An in silico Approach
Through the exponential development in the specification of sequences and structures of proteins by genome sequencing and structural genomics approaches, there is a growing demand for valid bioinformatics methods to define these proteins function. In this study, our objective is to identify the function of unknown proteins from UCB-1 pistachio rootstock and specify their class...
متن کامل