Resonant bonding leads to low lattice thermal conductivity.

نویسندگان

  • Sangyeop Lee
  • Keivan Esfarjani
  • Tengfei Luo
  • Jiawei Zhou
  • Zhiting Tian
  • Gang Chen
چکیده

Understanding the lattice dynamics and low thermal conductivities of IV-VI, V2-VI3 and V materials is critical to the development of better thermoelectric and phase-change materials. Here we provide a link between chemical bonding and low thermal conductivity. Our first-principles calculations reveal that long-ranged interaction along the 〈100〉 direction of the rocksalt structure exist in lead chalcogenides, SnTe, Bi2Te3, Bi and Sb due to the resonant bonding that is common to all of them. This long-ranged interaction in lead chalcogenides and SnTe cause optical phonon softening, strong anharmonic scattering and large phase space for three-phonon scattering processes, which explain why rocksalt IV-VI compounds have much lower thermal conductivities than zincblende III-V compounds. The new insights on the relationship between resonant bonding and low thermal conductivity will help in the development of better thermoelectric and phase change materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-Thermal-Conductivity (MS)1+x(TiS2)2 (M = Pb, Bi, Sn) Misfit Layer Compounds for Bulk Thermoelectric Materials

A series of (MS)1+x(TiS2)2 (M = Pb, Bi, Sn) misfit layer compounds are proposed as bulk thermoelectric materials. They are composed of alternating rock-salt-type MS layers and paired trigonal anti-prismatic TiS2 layers with a van der Waals gap. This naturally modulated structure shows low lattice thermal conductivity close to or even lower than the predicted minimum thermal conductivity. Measur...

متن کامل

The role of copper in the thermal conductivity of thermoelectric oxychalcogenides: do lone pairs matter?

Understanding the underlying mechanisms that suppress thermal conduction in solids is of paramount importance for the targeted design of materials for thermal management and thermoelectric energy conversion applications. Bismuth copper oxychalcogenides, BiOCuQ (Q = Se, Te), are highly crystalline thermoelectric materials with an unusually low lattice thermal conductivity of ∼0.5 Wm(-1) K(-1), a...

متن کامل

Giant Phonon Anharmonicity and Anomalous Pressure Dependence of Lattice Thermal Conductivity in Y2Si2O7 silicate

Modification of lattice thermal conductivity (κL) of a solid by means of hydrostatic pressure (P) has been a crucially interesting approach that targets a broad range of advanced materials from thermoelectrics and thermal insulators to minerals in mantle. Although it is well documented knowledge that thermal conductivity of bulk materials normally increase upon hydrostatic pressure, such positi...

متن کامل

The origin of incipient ferroelectricity in lead telluride

The interactions between electrons and lattice vibrations are fundamental to materials behaviour. In the case of group IV-VI, V and related materials, these interactions are strong, and the materials exist near electronic and structural phase transitions. The prototypical example is PbTe whose incipient ferroelectric behaviour has been recently associated with large phonon anharmonicity and the...

متن کامل

Epitaxial CrN thin films with high thermoelectric figure of merit.

A large enhancement of the thermoelectric figure of merit is reported in single-crystalline films of CrN. The mechanism of the reduction of the lattice thermal conductivity in cubic CrN is similar to the resonant bonding in IV-VI compounds. Therefore, useful ideas from classic thermo-electrics can be applied to tune functionalities in transition metal nitrides and oxides.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014