Well-dominated graphs without cycles of lengths 4 and 5
نویسندگان
چکیده
Let G be a graph. A set S of vertices in G dominates the graph if every vertex of G is either in S or a neighbor of a vertex in S. Finding a minimal cardinality set which dominates the graph is an NP-complete problem. The graph G is well-dominated if all its minimal dominating sets are of the same cardinality. The complexity status of recognizing well-dominated graphs is not known. We show that recognizing well-dominated graphs can be done polynomially for graphs without cycles of lengths 4 and 5, by proving that a graph belonging to this family is well-dominated if and only if it is well-covered. Assume that a weight function w is defined on the vertices of G. Then G is w-well-dominated if all its minimal dominating sets are of the same weight. We prove that the set of weight functions w such that G is w-welldominated is a vector space, and denote that vector space by WWD(G). We prove that WWD(G) is a subspace of WCW (G), the vector space of weight functions w such that G is w-well-covered. We provide a polynomial characterization of WWD(G) for the case that G does not contain cycles of lengths 4, 5, and 6.
منابع مشابه
On list vertex 2-arboricity of toroidal graphs without cycles of specific length
The vertex arboricity $rho(G)$ of a graph $G$ is the minimum number of subsets into which the vertex set $V(G)$ can be partitioned so that each subset induces an acyclic graph. A graph $G$ is called list vertex $k$-arborable if for any set $L(v)$ of cardinality at least $k$ at each vertex $v$ of $G$, one can choose a color for each $v$ from its list $L(v)$ so that the subgraph induced by ev...
متن کاملPlanar Graphs without Cycles of Speciic Lengths
It is easy to see that planar graphs without 3-cycles are 3-degenerate. Recently, it was proved that planar graphs without 5-cycles are also 3-degenerate. In this paper it is shown, more surprisingly, that the same holds for planar graphs without 6-cycles.
متن کاملPlanar Graphs Without Cycles of Specific Lengths
It is easy to see that planar graphs without 3-cycles are 3-degenerate. Recently, it was proved that planar graphs without 5-cycles are also 3-degenerate. In this paper it is shown, more surprisingly, that the same holds for planar graphs without 6-cycles.
متن کاملGraphs without proper subgraphs of minimum degree 3 and short cycles
We study graphs on n vertices which have 2n − 2 edges and no proper induced subgraphs of minimum degree 3. Erdős, Faudree, Gyárfás, and Schelp conjectured that such graphs always have cycles of lengths 3, 4, 5, . . . , C(n) for some function C(n) tending to infinity. We disprove this conjecture, resolve a related problem about leaf-to-leaf path lengths in trees, and characterize graphs with n v...
متن کاملA sufficient condition for planar graphs to be 3-colorable
Planar graphs without 3-cycles at distance less than 4 and without 5-cycles are proved to be 3-colorable. We conjecture that, moreover, each plane graph with neither 5-cycles nor intersecting 3-cycles is 3-colorable. In this conjecture, none of the two assumptions can be dropped because there exist planar 4-chromatic graphs without 5-cycles, as well as planar 4chromatic graphs without intersect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 340 شماره
صفحات -
تاریخ انتشار 2017