Valuation domains whose products of free modules are separable

نویسنده

  • FRANÇOIS COUCHOT
چکیده

It is proved that if R is a valuation domain with maximal ideal P and if RL is countably generated for each prime ideal L, then R R is separable if and only RJ is maximal, where J = ∩n∈NP . When R is a valuation domain satisfying one of the following two conditions: (1) R is almost maximal and its quotient field Q is countably generated (2) R is archimedean Franzen proved in [2] that R is separable if and only if R is maximal or discrete of rank one. In [3, Theorem XVI.5.4], Fuchs and Salce gave a slight generalization of this result and showed that R is separable if and only if R is discrete of rank one, when R is slender. The aim of this paper is to give another generalization of Franzen’s result by proving Theorem 8 below. If the maximal ideal P is principal, we get that R can be separable when R is neither maximal nor discrete of rank one. This is a negative answer to [3, Problem 59]. For proving his result, Franzen began by showing that each archimedean valuation domain which is not almost maximal, possesses an indecomposable reflexive module of rank 2. We use a similar argument in the proof of Theorem 8. Finally we give an example of a non-archimedean nonslender valuation domain such that R is not separable. This is a positive answer to [3, Problem 58]. In the sequel, R is a commutative unitary ring. An R-module whose submodules are totally ordered by inclusion, is said to be uniserial. IfR is a uniserialR-module, we say that R is a valuation ring. The R-topology of R is the linear topology for which each non-zero ideal is a neighborhood of 0. When R is a valuation ring with maximal ideal P and A is a proper ideal, then R/A is Hausdorff in the R/A-topology if and only if A 6= Pa, ∀0 6= a ∈ R. We say that R is (almost) maximal if R/A is complete in the R/A-topology for each (non-zero) proper ideal A 6= Pa, ∀0 6= a ∈ R. From now on, R is a valuation domain, P is its maximal ideal and Q is its field of quotients. Let M be an R-module and let N be a submodule. We say that N is a pure submodule of M if rN = rM ∩ N, ∀r ∈ R. Let M be a torsion-free module. We say that M is separable if each pure uniserial submodule is a summand. Recall that each element x of M is contained in a pure uniserial submodule U , where U is the inverse image of the torsion submodule of M/Rx by the canonical map M → M/Rx. Let M be a non-zero R-module. As in [3] we set: M ♯ = {s ∈ R | sM ⊂ M}. 2000 Mathematics Subject Classification. 13C10, 13F99, 13G05.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sigma-cotorsion Modules over Valuation Domains

We give a characterization of Σ-cotorsion modules over valuation domains in terms of descending chain conditions on certain chains of definable subgroups. We prove that pure submodules, direct products and modules elementarily equivalent to a Σ-cotorsion module are again Σ-cotorsion. Moreover, we describe the structure of Σ-cotorsion modules.

متن کامل

Multiplication operators on Banach modules over spectrally separable algebras

‎Let $mathcal{A}$ be a commutative Banach algebra and $mathscr{X}$ be a left Banach $mathcal{A}$-module‎. ‎We study the set‎ ‎${rm Dec}_{mathcal{A}}(mathscr{X})$ of all elements in $mathcal{A}$ which induce a decomposable multiplication operator on $mathscr{X}$‎. ‎In the case $mathscr{X}=mathcal{A}$‎, ‎${rm Dec}_{mathcal{A}}(mathcal{A})$ is the well-known Apostol algebra of $mathcal{A}$‎. ‎We s...

متن کامل

Whitehead Modules over Large Principal Ideal Domains

We consider the Whitehead problem for principal ideal domains of large size. It is proved, in ZFC, that some p.i.d.’s of size ≥ א2 have nonfree Whitehead modules even though they are not complete discrete valuation rings. A module M is a Whitehead module if ExtR(M,R) = 0. The second author proved that the problem of whether every Whitehead Z-module is free is independent of ZFC + GCH (cf. [5], ...

متن کامل

A Term of Commutative Algebra

Preface . . . . . . . . . . . . . . . . . . . . . . . iii 1. Rings and Ideals . . . . . . . . . . . . . . . . . . . 1 2. Prime Ideals . . . . . . . . . . . . . . . . . . . . 6 3. Radicals . . . . . . . . . . . . . . . . . . . . . . 10 4. Modules . . . . . . . . . . . . . . . . . . . . . . 14 5. Exact Sequences . . . . . . . . . . . . . . . . . . . 20 6. Direct Limits . . . . . . . . . . . . . ....

متن کامل

Decidability for Theories of Modules over Valuation Domains

Extending work of Puninski, Puninskaya and Toffalori in [PPT07], we show that if V is an effectively given valuation domain then the theory of all V -modules is decidable if and only if there exists an algorithm which, given a, b ∈ V , answers whether a ∈ rad(bV ). This was conjectured in [PPT07] for valuation domains with dense value group where it was proved for valuation domains with dense a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008