Viable RNaseH1 knockout mice show RNaseH1 is essential for R loop processing, mitochondrial and liver function

نویسندگان

  • Walt F. Lima
  • Heather M. Murray
  • Sagar S. Damle
  • Christopher E. Hart
  • Gene Hung
  • Cheryl Li De Hoyos
  • Xue-Hai Liang
  • Stanley T. Crooke
چکیده

Viable constitutive and tamoxifen inducible liver-specific RNase H1 knockout mice that expressed no RNase H1 activity in hepatocytes showed increased R-loop levels and reduced mitochondrial encoded DNA and mRNA levels, suggesting impaired mitochondrial R-loop processing, transcription and mitochondrial DNA replication. These changes resulted in mitochondrial dysfunction with marked changes in mitochondrial fusion, fission, morphology and transcriptional changes reflective of mitochondrial damage and stress. Liver degeneration ensued, as indicated by apoptosis, fibrosis and increased transaminase levels. Antisense oligonucleotides (ASOs) designed to serve as substrates for RNase H1 were inactive in the hepatocytes from the RNase H1 knockout mice and in vivo, demonstrating that RNase H1 is necessary for the activity of DNA-like ASOs. During liver regeneration, a clone of hepatocytes that expressed RNase H1 developed and partially restored mitochondrial and liver function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clinicopathologic and molecular spectrum of RNASEH1-related mitochondrial disease

OBJECTIVE Pathologic ribonuclease H1 (RNase H1) causes aberrant mitochondrial DNA (mtDNA) segregation and is associated with multiple mtDNA deletions. We aimed to determine the prevalence of RNase H1 gene (RNASEH1) mutations among patients with mitochondrial disease and establish clinically meaningful genotype-phenotype correlations. METHODS RNASEH1 was analyzed in patients with (1) multiple ...

متن کامل

RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells

A fraction of cancer cells maintain telomeres through the telomerase-independent, 'Alternative Lengthening of Telomeres' (ALT) pathway. ALT relies on homologous recombination (HR) between telomeric sequences; yet, what makes ALT telomeres recombinogenic remains unclear. Here we show that the RNA endonuclease RNaseH1 regulates the levels of RNA-DNA hybrids between telomeric DNA and the long nonc...

متن کامل

Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides

Gapmer antisense oligonucleotides cleave target RNA effectively in vivo, and is considered as promising therapeutics. Especially, gapmers modified with locked nucleic acid (LNA) shows potent knockdown activity; however, they also cause hepatotoxic side effects. For developing safe and effective gapmer drugs, a deeper understanding of the mechanisms of hepatotoxicity is required. Here, we invest...

متن کامل

Intersection of calorie restriction and magnesium in the suppression of genome-destabilizing RNA–DNA hybrids

Dietary calorie restriction is a broadly acting intervention that extends the lifespan of various organisms from yeast to mammals. On another front, magnesium (Mg2+) is an essential biological metal critical to fundamental cellular processes and is commonly used as both a dietary supplement and treatment for some clinical conditions. If connections exist between calorie restriction and Mg2+ is ...

متن کامل

Hepatocyte specific RNase H1 knockout mice: Clarifying functions of mammalian RNase H1

Human RNase H1 cleaves RNA only when the RNA is present in a DNA-RNA heteroduplex. Previous efforts to create RNase H1 knockout mice resulted in embryonic lethality1, but demonstrated that RNase H1 is required for mitochondrial function. We constructed viable constitutive hepatocyte liver specific RNase H1 knock out mice by coupling the Cre recombinase to an albumin promoter as albumin is not e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2016