Computational Fluid Dynamics for Dense Gas-solid Fluidized Beds: a Multi-scale Modeling Strategy
نویسندگان
چکیده
Dense gas-particle flows are encountered in a variety of industrially important processes for large scale production of fuels, fertilizers and base chemicals. The scale-up of these processes is often problematic and is related to the intrinsic complexities of these flows which are unfortunately not yet fully understood despite significant efforts made in both academic and industrial research laboratories. In dense gas-particle flows both (effective) fluid-particle and (dissipative) particle-particle interactions need to be accounted for because these phenomena to a large extent govern the prevailing flow phenomena, i.e. the formation and evolution of heterogeneous structures. These structures have significant impact on the quality of the gas-solid contact and as a direct consequence thereof strongly affect the performance of the process. Due to the inherent complexity of dense gas-particles flows, we have adopted a multi-scale modeling approach in which both fluid-particle and particle-particle interactions can be properly accounted for. The idea is essentially that fundamental models, taking into account the relevant details of fluid-particle (lattice Boltzmann model) and particle-particle (discrete particle model) interactions, are used to develop closure laws to feed continuum models which can be used to compute the flow structures on a much larger (industrial) scale. Our multi-scale approach (see Fig. 1) involves the lattice Boltzmann model, the discrete particle model, the continuum model based on the kinetic theory of granular flow, and the discrete bubble model. In this paper we give an overview of the multi-scale modeling strategy, accompanied by illustrative computational results for bubble formation. In addition, areas which need substantial further attention will be highlighted.
منابع مشابه
Evaluation of Eulerian Two-Fluid Numerical Method for the Simulation of Heat Transfer in Fluidized Beds
Accurate modeling of fluidization and heat transfer phenomena in gas-solid fluidized beds is not solely dependent on the particular selected numerical model and involved algorithms. In fact, choosing the right model for each specific operating condition, the correct implementation of each model, and the right choice of parameters and boundary conditions, determine the accuracy of the results i...
متن کاملCFD Modeling of TiO2 Nano-Agglomerates Hydrodynamics in a Conical Fluidized Bed Unit with Experimental Validation
In the computational fluid dynamics (CFD) modeling of gas-solids two phase flow, the effect of boundary conditions play an important role in predicting the hydrodynamic characteristics of fluidized beds. In this work, the hydrodynamics of conical fluidized bed containing dried TiO2 nano-agglomerates were studied both experimentally and computationally. The pressure drop ...
متن کامل3D Eulerian simulation of a gas-solid bubbling fluidized bed: assessment of drag coefficient correlations
Fluidized beds have been widely used in power generation and in the chemical, biochemical, and petroleum industries. The 3D simulation of commercial scale fluidized beds has been computationally impractical due to the required memory and processor speeds. However, in this study, 3D Computational Fluid Dynamics simulation of a gas-solid bubbling fluidized bed is performed to investigate the effe...
متن کاملDetermination of Cluster Hydrodynamics in Bubbling Fluidized Beds by the EMMS Approach
The local solid flow structure of gas-solid bubbling fluidized bed was investigated to identify and characterize the particle clusters. Extensive mathematical calculations were carried out using the energy-minimization multi-scale (EMMS) approach for evaluating cluster properties including the velocity, the size and the void fraction of clusters in the dense phase of the bed. The results showed...
متن کاملCFD-DEM Investigation on van der Waals Force in Gas-Solid Bubbling Fluidized Beds
Effect of interparticle force on the hydrodynamics of gas-solid fluidized beds was investigated using the combined method of computational fluid dynamics and discrete element method (CFD-DEM). The cohesive force between particles was considered to follow the van der Waals equation form. The model was validated by experimental results from literature in terms of bed voidage distribution and Eule...
متن کامل