The Iterative Method of Generalized u0-Concave Operators

نویسندگان

  • Yanqiu Zhou
  • Jingxian Sun
  • Jie Sun
چکیده

We define the concept of the generalized u0-concave operators, which generalize the definition of the u0-concave operators. By using the iterative method and the partial ordering method, we prove the existence and uniqueness of fixed points of this class of the operators. As an example of the application of our results, we show the existence and uniqueness of solutions to a class of the Hammerstein integral equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed point theorems for generalized concave operators and applications to fractional differential equation boundary value problems

In this paper, by introducing the concept of a generalized concave operator and the properties of cone and monotone iterative technique in ordered Banach spaces, some new existence and uniqueness theorems of fixed points for the operator under more extensive conditions are obtained. Finally, as applications, we apply the results obtained in this paper to study the existence and uniqueness of po...

متن کامل

Application of iterative method for solving fuzzy Bernoulli equation under generalized H-differentiability

In this paper, the Picard method is proposed to solve the Bernoulli equation with fuzzy initial condition under generalized H-differentiability. The existence and uniqueness of the solution and convergence of the proposed method are proved in details. Finally an example shows the accuracy of this method.

متن کامل

An iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint

In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...

متن کامل

Some iterative method for finding a common zero of a finite family of accretive operators in Banach spaces

‎The purpose of this paper is to introduce a new mapping for a finite‎ ‎family of accretive operators and introduce an iterative algorithm‎ ‎for finding a common zero of a finite family of accretive operators‎ ‎in a real reflexive strictly convex Banach space which has a‎ ‎uniformly G^ateaux differentiable norm and admits the duality‎ ‎mapping $j_{varphi}$‎, ‎where $varphi$ is a gauge function ...

متن کامل

An Iterative Scheme for Generalized Equilibrium, Variational Inequality and Fixed Point Problems Based on the Extragradient Method

The problem ofgeneralized equilibrium problem is very general in the different subjects .Optimization problems, variational inequalities, Nash equilibrium problem and minimax problems are as special cases of generalized equilibrium problem. The purpose of this paper is to investigate the problem of approximating a common element of the set of generalized equilibrium problem, variational inequal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011