On Spectral Polynomials of the Heun Equation. Ii

نویسندگان

  • BORIS SHAPIRO
  • KOUICHI TAKEMURA
چکیده

The well-known Heun equation has the form

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial Solutions of the Heun Equation

We review properties of certain types of polynomial solutions of the Heun equation. Two aspects are particularly concerned, the interlacing property of spectral and Stieltjes polynomials in the case of real roots of these polynomials and asymptotic root distribution when complex roots are present.

متن کامل

On edge detour index polynomials

The edge detour index polynomials were recently introduced for computing the edge detour indices. In this paper we find relations among edge detour polynomials for the 2-dimensional graph of $TUC_4C_8(S)$ in a Euclidean plane and $TUC4C8(S)$ nanotorus.

متن کامل

ar X iv : 0 90 4 . 06 50 v 1 [ m at h - ph ] 3 A pr 2 00 9 ON SPECTRAL POLYNOMIALS OF THE HEUN EQUATION

The well-known Heun equation has the form  Q(z) d 2 dz 2 + P (z) d dz + V (z) ff S(z) = 0, where Q(z) is a cubic complex polynomial, P (z) and V (z) are polynomials of degree at most 2 and 1 respectively. One of the classical problems about the Heun equation suggested by E. Heine and T. Stieltjes in the late 19-th century is for a given positive integer n to find all possible polynomials V (z)...

متن کامل

On Spectral Polynomials of the Heun

The well-known Heun equation has the form { Q(z) d2 dz2 + P (z) d dz + V (z) } S(z) = 0, where Q(z) is a cubic complex polynomial, P (z) and V (z) are polynomials of degree at most 2 and 1 respectively. One of the classical problems about the Heun equation suggested by E. Heine and T. Stieltjes in the late 19-th century is for a given positive integer n to find all possible polynomials V (z) su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009