Striatal Spine Plasticity in Parkinson's Disease

نویسندگان

  • Rosa M. Villalba
  • Yoland Smith
چکیده

Striatal dopamine (DA) denervation results in a significant loss of dendritic spines on medium spiny projection neurons in Parkinson's disease. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated parkinsonian monkeys, spines contacted either by cortical or thalamic glutamatergic terminals are severely affected on both direct and indirect striatofugal neurons. In rodents, indirect pathway neurons appear to be more sensitive, at least in early stages of acute dopamine denervation. The remaining corticostriatal and thalamostriatal axo-spinous synapses undergo complex ultrastructural remodeling consistent with increased synaptic activity in the DA-denervated primate striatum, which may explain the pathophysiological overactivity of the corticostriatal system reported in various animal models of parkinsonism. The calcium-mediated regulation of the transcription factor myocyte enhancer factor 2 was recognized as a possible underlying mechanism for striatal spine plasticity. Future studies to determine how alterations in striatal spine plasticity contribute to the symptomatology of parkinsonism are warranted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Striatal plasticity in parkinsonism: dystrophic changes in medium spiny neurons and progression in Parkinson's disease.

Striatal dopamine loss in Parkinson's Disease (PD) sets into play a variety of compensatory responses to help counter dopamine depletion. Most of these changes involve surviving dopamine neurons, but there are also changes in striatal medium spiny neurons (MSNs), which are the major target of dopamine axons. Among these changes are decreases in MSN dendritic length and spine density, which may ...

متن کامل

Betamethasone Can Significantly Decrease Level of Striatal Glutamate in Animal Model of Parkinson's Disease

In the present study, the effect of steroidal anti-inflammatory drug betamethasone (0.12, 0.24 mg/kg, i.p. acutely) on striatal glutamate level in Parkinsonian rats was studied using the microdialysis technique. Our results showed significant differences (p

متن کامل

Morphological and electrophysiological changes in intratelencephalic-type pyramidal neurons in the motor cortex of a rat model of levodopa-induced dyskinesia.

Levodopa-induced dyskinesia (LID) is a major complication of long-term dopamine replacement therapy for Parkinson's disease, and becomes increasingly problematic in the advanced stage of the disease. Although the cause of LID still remains unclear, there is accumulating evidence from animal experiments that it results from maladaptive plasticity, resulting in supersensitive excitatory transmiss...

متن کامل

Betamethasone Can Significantly Decrease Level of Striatal Glutamate in Animal Model of Parkinson's Disease

In the present study, the effect of steroidal anti-inflammatory drug betamethasone (0.12, 0.24 mg/kg, i.p. acutely) on striatal glutamate level in Parkinsonian rats was studied using the microdialysis technique. Our results showed significant differences (p

متن کامل

A study on striatal local electrical potential changes in an animal model of Parkinson's disease

Parkinson’s disease (PD) is a neurodegenerative disorder that does not develop spontaneously in some animal species. PD can be induced experimentally in some laboratory animals including mouse, rat and horse. Globus pallidus (GP) and substantia nigra pars compacta (SNc) are damaged in patients with PD. The hallmark of PD is a progressive impaired control of movement, an alteration of autonomic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2010