Kernel Regularized Multiple Criteria Linear Programming
نویسندگان
چکیده
Based on our proposed regularized multiple criteria linear programming (RMCLP) for binary classification problems, this paper extends this method to treat with nonlinear case. By applying dual theory, we derived the dual problem of optimization problem constructed in RMCLP, and then proved the solution of RMCLP can be computed by the solution of its dual problem, finally, we constructed Algorithm Kernel RMCLP by introducing Kernel functions in RMCLP. A series of experimental tests are conducted to illustrate the performance of the proposed Kernel RMCLP with the outstanding support vector machine (SVM). The results of several publicly available datasets and a real-life credit dataset all show that our Kernel RMCLP is a competitive method in classification.
منابع مشابه
Multi-class Discriminant Kernel Learning via Convex Programming
Regularized kernel discriminant analysis (RKDA) performs linear discriminant analysis in the feature space via the kernel trick. Its performance depends on the selection of kernels. In this paper, we consider the problem of multiple kernel learning (MKL) for RKDA, in which the optimal kernel matrix is obtained as a linear combination of pre-specified kernel matrices. We show that the kernel lea...
متن کاملKernel-based multiple criteria linear programming classifier
This paper proposed a novel classification model which introduced the kernel function into the original Multiple Criteria Linear Programming (MCLP) model. MCLP model is used as a classification method which can only solve linear separable problems in data mining. However, the proposed kernel-based MCLP model can deal with non-linear cases. Meanwhile, unlike some other complicated models, this m...
متن کاملMultiple Criteria Decision Making Combined with VRP: A Categorized Bibliographic Study
In this research author reviews references related to the topic of multi criterion (goal programming, multiple objective linear and nonlinear programming, bi-criterion programming, Multi Attribute Decision Making, Compromise Programming, Surrogate Worth Trade-off Method) and various versions of vehicle routing problem (VRP), Multi depot VRP (MDVRP), VRP with time windows (VRPWTW), Stochastic VR...
متن کاملKernel machines with two layers and multiple kernel learning
In this paper, the framework of kernel machines with two layers is introduced, generalizing classical kernel methods. The new learning methodology provide a formal connection between computational architectures with multiple layers and the theme of kernel learning in standard regularization methods. First, a representer theorem for two-layer networks is presented, showing that finite linear com...
متن کاملParallel Regularized Multiple-criteria Linear Programming
In this paper, we proposed a new parallel algorithm: Parallel Regularized Multiple-Criteria Linear Programming (PRMCLP) to overcome the computing and storage requirements increased rapidly with the number of training samples. Firstly, we convert RMCLP model into a unconstrained optimization problem, and then split it into several parts, and each part is computed by a single processor. After tha...
متن کامل