De novo design of a tumor-penetrating peptide.

نویسندگان

  • Luca Alberici
  • Lise Roth
  • Kazuki N Sugahara
  • Lilach Agemy
  • Venkata R Kotamraju
  • Tambet Teesalu
  • Claudio Bordignon
  • Catia Traversari
  • Gian-Paolo Rizzardi
  • Erkki Ruoslahti
چکیده

Poor penetration of antitumor drugs into the extravascular tumor tissue is often a major factor limiting the efficacy of cancer treatments. Our group has recently described a strategy to enhance tumor penetration of chemotherapeutic drugs through use of iRGD peptide (CRGDK/RGPDC). This peptide comprises two sequence motifs: RGD, which binds to αvβ3/5 integrins on tumor endothelia and tumor cells, and a cryptic CendR motif (R/KXXR/K-OH). Once integrin binding has brought iRGD to the tumor, the peptide is proteolytically cleaved to expose the cryptic CendR motif. The truncated peptide loses affinity for its primary receptor and binds to neuropilin-1, activating a tissue penetration pathway that delivers the peptide along with attached or co-administered payload into the tumor mass. Here, we describe the design of a new tumor-penetrating peptide based on the current knowledge of homing sequences and internalizing receptors. The tumor-homing motif in the new peptide is the NGR sequence, which binds to endothelial CD13. The NGR sequence was placed in the context of a CendR motif (RNGR), and this sequence was embedded in the iRGD framework. The resulting peptide (CRNGRGPDC, iNGR) homed to tumor vessels and penetrated into tumor tissue more effectively than the standard NGR peptide. iNGR induced greater tumor penetration of coupled nanoparticles and co-administered compounds than NGR. Doxorubicin given together with iNGR was significantly more efficacious than the drug alone. These results show that a tumor-specific, tissue-penetrating peptide can be constructed from known sequence elements. This principle may be useful in designing tissue-penetrating peptides for other diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Cell Penetrating Peptide Delivery System on HPV16E7 Expression in Three Types of Cell Line

Background: The poor permeability of the plasma and nuclear membranes to DNA plasmids are two major barriers for the development of these therapeutic molecules. Therefore, success in gene therapy approaches depends on the development of efficient and safe non-viral delivery systems. Objectives: The aim of this study was to investigate the in vitro delivery of plasmid DNA encoding HPV16 E7 gene...

متن کامل

On solving possibilistic multi- objective De Novo linear programming

Multi-objective De Novo linear programming (MODNLP) is problem for designing optimal system by reshaping the feasible set (Fiala [3] ). This paper deals with MODNLP having possibilistic objective functions coefficients. The problem is considered by inserting possibilistic data in the objective functions coefficients. The solution of the problem is defined and established under the using of effi...

متن کامل

Microbial Contamination of Leafy Vegetables in Porto-Novo, Republic of Benin

Background: The vegetables provide important nutrients to human beings. Nevertheless, contaminated vegetables can cause health problems because of their microbial load. The aim of this study was to assess the microbial quality of three main leafy vegetables cultivated and consumed at Porto-Novo in Republic of Benin. Methods: Totally, 36 samples of amaranth, nightshade, and lettuce were taken f...

متن کامل

New Approach to Peptide Ligand Design Based on Atom-by- atom de novo Design

De novo ligand design is a key developing technology for the computer-aided design of enzyme inhibitors. By this method, one can design a number of novel inhibitor candidates based on the 3D structure of the target enzyme [1-6]. There are two different ways to design ligands de novo. One is so called atom by atom, and the other is fragment-based. Nonpeptide inhibitors are more desirable than pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 73 2  شماره 

صفحات  -

تاریخ انتشار 2013