Bayesian parameter estimation via variational methods
نویسندگان
چکیده
We consider a logistic regression model with a Gaussian prior distribution over the parameters. We show that an accurate variational transformation can be used to obtain a closed form approximation to the posterior distribution of the parameters thereby yielding an approximate posterior predictive model. This approach is readily extended to binary graphical model with complete observations. For graphical models with incomplete observations we utilize an additional variational transformation and again obtain a closed form approximation to the posterior. Finally, we show that the dual of the regression problem gives a latent variable density model, the variational formulation of which leads to exactly solvable EM updates.
منابع مشابه
Parameter Estimation for the Latent Dirichlet Allocation
We review three algorithms for parameter estimation of the Latent Dirichlet Allocation model: batch variational Bayesian inference, online variational Bayesian inference and inference using collapsed Gibbs sampling. We experimentally compare their time complexity and performance. We find that the online variational Bayesian inference converges faster than the other two inference techniques, wit...
متن کاملIncremental Sparse Bayesian Learning for Parameter Estimation of Superimposed Signals
This work discuses a novel algorithm for joint sparse estimation of superimposed signals and their parameters. The proposed method is based on two concepts: a variational Bayesian version of the incremental sparse Bayesian learning (SBL)– fast variational SBL – and a variational Bayesian approach for parameter estimation of superimposed signal models. Both schemes estimate the unknown parameter...
متن کاملLatent Dirichlet Bayesian Co-Clustering
Co-clustering has emerged as an important technique for mining contingency data matrices. However, almost all existing coclustering algorithms are hard partitioning, assigning each row and column of the data matrix to one cluster. Recently a Bayesian co-clustering approach has been proposed which allows a probability distribution membership in row and column clusters. The approach uses variatio...
متن کاملBayesian Prior Choice in IRT Estimation Using MCMC and Variational Bayes
This study investigated the impact of three prior distributions: matched, standard vague, and hierarchical in Bayesian estimation parameter recovery in two and one parameter models. Two Bayesian estimation methods were utilized: Markov chain Monte Carlo (MCMC) and the relatively new, Variational Bayesian (VB). Conditional (CML) and Marginal Maximum Likelihood (MML) estimates were used as baseli...
متن کاملE-Bayesian Approach in A Shrinkage Estimation of Parameter of Inverse Rayleigh Distribution under General Entropy Loss Function
Whenever approximate and initial information about the unknown parameter of a distribution is available, the shrinkage estimation method can be used to estimate it. In this paper, first the $ E $-Bayesian estimation of the parameter of inverse Rayleigh distribution under the general entropy loss function is obtained. Then, the shrinkage estimate of the inverse Rayleigh distribution parameter i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics and Computing
دوره 10 شماره
صفحات -
تاریخ انتشار 2000