Robust Edge-Enhanced Fragment Based Normalized Correlation Tracking in Cluttered and Occluded Imagery
نویسندگان
چکیده
Correlation trackers are in use for the past four decades. Edge based correlation tracking algorithms have proved their strength for long term tracking, but these algorithms suffer from two major problems: clutter and slow occlusion. Thus, there is a requirement to improve the confidence measure regarding target and non-target object. In order to solve these problems, we present an “Edge Enhanced Fragment Based Normalized Correlation (EEFNC)” algorithm, in which we: (1) divide the target template into nine non-overlapping fragments after edge-enhancement, (2) correlate each fragment with the corresponding fragment of the template-size section in the search region, and (3) achieve the final similarity measure by averaging the correlation values obtained for every fragment. A fragment level template updating method is also proposed to make the template adaptive to the variation in the shape and appearance of the object in motion. We provide the experimental results which show that the proposed technique outperforms the recent Edge-Enhanced Normalized Correlation (EENC) tracking algorithm in occlusion and clutter.
منابع مشابه
Narrow band based and broadband derived vegetation indices using Sentinel-2 Imagery to estimate vegetation biomass
Forest’s ecosystem is one of the most important carbon sink of the terrestrial ecosystem. Remote sensing technology provides robust techniques to estimate biomass and solve challenges in forest resource assessment. The present study explored the potential of Sentinel-2 bands to estimate biomass and comparatively analyzed of red-edge band based and broadband derived vegetation indices. Broadband...
متن کاملA Novel Method for Tracking Moving Objects using Block-Based Similarity
Extracting and tracking active objects are two major issues in surveillance and monitoring applications such as nuclear reactors, mine security, and traffic controllers. In this paper, a block-based similarity algorithm is proposed in order to detect and track objects in the successive frames. We define similarity and cost functions based on the features of the blocks, leading to less computati...
متن کاملParticle Filtering with Region-based Matching for Tracking of Partially Occluded and Scaled Targets
Visual tracking of arbitrary targets in clutter is important for a wide range of military and civilian applications. We propose a general framework for the tracking of scaled and partially occluded targets, which do not necessarily have prominent features. The algorithm proposed in the present paper utilizes a modified normalized cross-correlation as the likelihood for a particle filter. The al...
متن کاملAdvanced Correlation Tracking of Objects in Cluttered Imagery
Correlation tracking is used in civilian and military automatic target recognition and surveillance systems, to track objects based on their 2-dimensional shape. However traditional correlation-tracking systems have difficulty robustly detecting an object when the object is partially obscured by clutter. This paper describes one of the main problems of image-based correlation tracking systems, ...
متن کاملAssessment of Vegetation Temperature Status (VTCI) for monitoring drought in the watershed of Lake Urmia by using MODIS satellite imagery
Continuous decline in Lake Urmia water levels In recent years, the decline of rainfall and river flows and constant droughts has become the main concern of the people and the people. To study climate change and increase of temperature in the catchment area of Lake Urmia, two factors for measuring the temperature and properties of satellite images were used which indicate the importance of lan...
متن کامل