Mixing and transport by ciliary carpets: a numerical study
نویسندگان
چکیده
We use a 3D computational model to study the fluid transport and mixing due to the beating of an infinite array of cilia. In accord with recent experiments, we observe two distinct regions: a fluid transport region above the cilia and a fluid mixing region below the cilia tip. The metachronal wave due to phase differences between neighboring cilia is known to enhance the fluid transport above the ciliary tip. In this work, we show that the metachronal wave also enhances the mixing rates in the sub-ciliary region, often simultaneously with the flow rate enhancement. Our results suggest that this simultaneous enhancement in transport and mixing is due to an enhancement in shear flow. As the flow above the cilia increases, shear rate in the fluid increases and such shear enhances stretching, which is an essential ingredient for mixing. Estimates of the mixing time scale indicate that, compared to diffusion, the mixing due to the cilia beat may be significant and sometimes dominates chemical diffusion.
منابع مشابه
Effect of Cilia Beat Frequency on Muco-ciliary Clearance
Background: The airway surface liquid (ASL), which is a ï‚uid layer coating the interior epithelial surface of the bronchi and bronchiolesis, plays an important defensive role against foreign particles and chemicals entering lungs.Objective: Numerical investigation has been employed to solve two-layer model consisting of mucus layer as a viscoelastic fluid and periciliary liquid layer as a New...
متن کاملNumerical Study on Low Reynolds Mixing ofT-Shaped Micro-Mixers with Obstacles
Micromixers are one of the most crucial components of Lab-On-a-Chip devices with the intention of mixing and dispersion of reagents like small molecules and particles. The challenge facing micromixers is typically insufficient mixing efficiency in basic designs, which results in longer microchannels. Therefore, it is desirable to increase mixing efficiency, in order to decrease mixing length, w...
متن کامل-Implementation of lattice Boltzmann method to study mixing reduction in isothermal electroosmotic pump with hydrophobic walls
The aim of the present work is to analyze the accuracy and to extend the capability of lattice Boltzmann method in slip EOF; a phenomenon which was previously studied by molecular dynamics and less considered by LBM. At the present work, a numerical experiment on boundary conditions of slip velocity is performed and the proportionality of slip with shear stress in electroosmotic pump is proved....
متن کاملFlow Induced by Bacterial Carpets and Transport of Microscale Loads
Microfluidics devices carry very small volumes of liquid though channels and have been used in many biological applications including drug discovery and development. In many microfluidic experiments, it would be useful to mix the fluid within the chamber. However, the traditional methods of mixing and pumping at large length scales don't work at small length scales. Recent experimental work has...
متن کاملA Numerical Study on Mixing of Transverse Injection in Supersonic Combustor
A numerical study on mixing of hydrogen injected transversely into a supersonic air stream has been performed by solving Two-Dimensional full Navier-Stokes equations. An explicit Harten-Yee Non-MUSCL Modified-flux-type TVD scheme has been used to solve the system of equations, and a zero-equation algebraic turbulence model to calculate the eddy viscosity coefficient. The main objectives of this...
متن کامل