Strictly Positive Definite Functions on a Real Inner Product Space

نویسنده

  • Allan Pinkus
چکیده

Abstract. If f(t) = ∑∞ k=0 akt k converges for all t ∈ IR with all coefficients ak ≥ 0, then the function f(< x,y >) is positive definite on H ×H for any inner product space H. Set K = {k : ak > 0}. We show that f(< x,y >) is strictly positive definite if and only if K contains the index 0 plus an infinite number of even integers and an infinite number of odd integers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strictly Hermitian Positive Definite Functions

Let H be any complex inner product space with inner product < ·, · >. We say that f : | C → | C is Hermitian positive definite on H if the matrix ( f(< z,z >) )n r,s=1 (∗) is Hermitian positive definite for all choice of z, . . . ,z in H, all n. It is strictly Hermitian positive definite if the matrix (∗) is also non-singular for any choice of distinct z, . . . ,z in H. In this article we prove...

متن کامل

Strictly positive definite kernels on subsets of the complex plane

In this paper we seek for inner product dependent strictly positive definite kernels on subsets of C. We present separated necessary and sufficient conditions in order that a positive definite kernel on C be strictly positive definite. One emphasis is on strictly positive definite kernels on the unit circle. Since positive definite kernels on the circle were already characterized in [1], the st...

متن کامل

Strictly positive definite reflection invariant functions

Strictly positive definite functions are used as basis functions for approximation methods in various contexts. Using a group theoretic interpretation of Bochner’s Theorem we give a sufficient condition for strictly positive definite functions on a semi-direct product which are invariant under the natural action of a given subgroup. As an application strictly positive definite, reflection invar...

متن کامل

Strictly positive definite functions on the unit circle

We study strictly positive definite functions on the unit circle in the Euclidean space of dimension two. We develop several conditions pertaining to the determination of such functions. The major result is obtained by considering the set of real numbers as a vector space over the field of rational numbers and then applying the Kronecker approximation theorem and Weyl’s criterion on equidistrib...

متن کامل

On the Curvature of a Certain Riemannian Space of Matrices

The state space of a finite quantum system is identified with the set of positive semidefinite matrices of trace 1. The set of all strictly positive definite matrices of trace 1 becomes naturally a differentiable manifold and the Bogoliubov–Kubo– Mori scalar product defines a Riemannian structure on it. Reference 4 tells about the relation of this metric to the von Neumann entropy functional. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. Comput. Math.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2004