Functional characterization of adaptive variation within a cis-regulatory element influencing Drosophila melanogaster growth
نویسندگان
چکیده
Gene expression variation is a major contributor to phenotypic diversity within species and is thought to play an important role in adaptation. However, examples of adaptive regulatory polymorphism are rare, especially those that have been characterized at both the molecular genetic level and the organismal level. In this study, we perform a functional analysis of the Drosophila melanogaster CG9509 enhancer, a cis-regulatory element that shows evidence of adaptive evolution in populations outside the species' ancestral range in sub-Saharan Africa. Using site-directed mutagenesis and transgenic reporter gene assays, we determined that 3 single nucleotide polymorphisms are responsible for the difference in CG9509 expression that is observed between sub-Saharan African and cosmopolitan populations. Interestingly, while 2 of these variants appear to have been the targets of a selective sweep outside of sub-Saharan Africa, the variant with the largest effect on expression remains polymorphic in cosmopolitan populations, suggesting it may be subject to a different mode of selection. To elucidate the function of CG9509, we performed a series of functional and tolerance assays on flies in which CG9509 expression was disrupted. We found that CG9509 plays a role in larval growth and influences adult body and wing size, as well as wing loading. Furthermore, variation in several of these traits was associated with variation within the CG9509 enhancer. The effect on growth appears to result from a modulation of active ecdysone levels and expression of growth factors. Taken together, our findings suggest that selection acted on 3 sites within the CG9509 enhancer to increase CG9509 expression and, as a result, reduce wing loading as D. melanogaster expanded out of sub-Saharan Africa.
منابع مشابه
Microevolution of cis-Regulatory Elements: An Example from the Pair-Rule Segmentation Gene fushi tarazu in the Drosophila melanogaster Subgroup
The importance of non-coding DNAs that control transcription is ever noticeable, but the characterization and analysis of the evolution of such DNAs presents challenges not found in the analysis of coding sequences. In this study of the cis-regulatory elements of the pair rule segmentation gene fushi tarazu (ftz) I report the DNA sequences of ftz's zebra element (promoter) and a region containi...
متن کاملCis- and Trans-regulatory Effects on Gene Expression in a Natural Population of Drosophila melanogaster.
Cis- and trans-regulatory mutations are important contributors to transcriptome evolution. Quantifying their relative contributions to intraspecific variation in gene expression is essential for understanding the population genetic processes that underlie evolutionary changes in gene expression. Here, we have examined this issue by quantifying genome-wide, allele-specific expression (ASE) varia...
متن کاملIndependent effects of cis- and trans-regulatory variation on gene expression in Drosophila melanogaster.
Biochemical interactions between cis-regulatory DNA sequences and trans-regulatory gene products suggest that cis- and trans-acting polymorphisms may interact genetically. Here we present a strategy to test this hypothesis by comparing the relative cis-regulatory activity of two alleles in different genetic backgrounds. Of the eight genes surveyed in this study, five were affected by trans-acti...
متن کاملGenetic Determinants of RNA Editing Levels of ADAR Targets in Drosophila melanogaster
RNA editing usually affects only a fraction of expressed transcripts and there is a vast amount of variation in editing levels of ADAR (adenosine deaminase, RNA-specific) targets. Here we explore natural genetic variation affecting editing levels of particular sites in 81 natural strains of Drosophila melanogaster. The analysis of associations between editing levels and single-nucleotide polymo...
متن کاملDiscovering structural cis-regulatory elements by modeling the behaviors of mRNAs
Gene expression is regulated at each step from chromatin remodeling through translation and degradation. Several known RNA-binding regulatory proteins interact with specific RNA secondary structures in addition to specific nucleotides. To provide a more comprehensive understanding of the regulation of gene expression, we developed an integrative computational approach that leverages functional ...
متن کامل