Photoinhibition-Like Damage to the Photosynthetic Apparatus in Plant Leaves Induced by Submergence Treatment in the Dark
نویسندگان
چکیده
Submergence is a common type of environmental stress for plants. It hampers survival and decreases crop yield, mainly by inhibiting plant photosynthesis. The inhibition of photosynthesis and photochemical efficiency by submergence is primarily due to leaf senescence and excess excitation energy, caused by signals from hypoxic roots and inhibition of gas exchange, respectively. However, the influence of mere leaf-submergence on the photosynthetic apparatus is currently unknown. Therefore, we studied the photosynthetic apparatus in detached leaves from four plant species under dark-submergence treatment (DST), without influence from roots and light. Results showed that the donor and acceptor sides, the reaction center of photosystem II (PSII) and photosystem I (PSI) in leaves were significantly damaged after 36 h of DST. This is a photoinhibition-like phenomenon similar to the photoinhibition induced by high light, as further indicated by the degradation of PsaA and D1, the core proteins of PSI and PSII. In contrast to previous research, the chlorophyll content remained unchanged and the H2O2 concentration did not increase in the leaves, implying that the damage to the photosynthetic apparatus was not caused by senescence or over-accumulation of reactive oxygen species (ROS). DST-induced damage to the photosynthetic apparatus was aggravated by increasing treatment temperature. This type of damage also occurred in the anaerobic environment (N2) without water, and could be eliminated or restored by supplying air to the water during or after DST. Our results demonstrate that DST-induced damage was caused by the hypoxic environment. The mechanism by which DST induces the photoinhibition-like damage is discussed below.
منابع مشابه
Photosynthetic acclimation is important for post-submergence recovery of photosynthesis and growth in two riparian species.
BACKGROUND AND AIMS Concomitant increases in O(2) and irradiance upon de-submergence can cause photoinhibition and photo-oxidative damage to the photosynthetic apparatus of plants. As energy and carbohydrate supply from photosynthesis is needed for growth, it was hypothesized that post-submergence growth recovery may require efficient photosynthetic acclimation to increased O(2) and irradiance ...
متن کاملUltraviolet-B Radiation (UV-B) Relieves Chilling-Light-Induced PSI Photoinhibition And Accelerates The Recovery Of CO2 Assimilation In Cucumber (Cucumis sativus L.) Leaves
Ultraviolet-B radiation (UV-B) is generally considered to negatively impact the photosynthetic apparatus and plant growth. UV-B damages PSII but does not directly influence PSI. However, PSI and PSII successively drive photosynthetic electron transfer, therefore, the interaction between these systems is unavoidable. So we speculated that UV-B could indirectly affect PSI under chilling-light con...
متن کاملThe Study of Different Water Regimes on Photosynthetic Performance and Leaf Water Status of Pistachio Trees (Pistacia vera L.)
Water deficiency is one of the most important environmental stresses that limit plant growth and crop production. Measurement of chlorophyll fluorescence parameters is considered as an important indicator to evaluate the photosynthetic apparatus. In the present study, the effects of regulated water deficit, investigated in four water-regimes in pistachio orchard with 12-year-old trees of Akbari...
متن کاملPhotosynthetic Apparatus and High Temperature: Role of Light
The rate of oxygen evolution/consumption, in vivo electron transport activity, overall photosynthetic capacity and accumulation of the chloroplast 30 kDa heat shock proteins were studied after treatment of intact barley seedlings at 40oC for 3 hours either in presence of low white light (100 μmol m–2.s–1) or in the dark. High temperature impact in the dark resulted in lowering of water-splittin...
متن کاملThe submergence tolerance gene SUB1A delays leaf senescence under prolonged darkness through hormonal regulation in rice.
Leaf senescence is a natural age-dependent process that is induced prematurely by various environmental stresses. Typical alterations during leaf senescence include breakdown of chlorophyll, a shift to catabolism of energy reserves, and induction of senescence-associated genes, all of which can occur during submergence, drought, and constant darkness. Here, we evaluated the influence of the sub...
متن کامل