Stochastic Expansions in an Overcomplete Wavelet Dictionary

نویسندگان

  • F. Abramovich
  • B. W. Silverman
چکیده

We consider random functions defined in terms of members of an overcomplete wavelet dictionary. The function is modelled as a sum of wavelet components at arbitrary positions and scales where the locations of the wavelet components and the magnitudes of their coefficients are chosen with respect to a marked Poisson process model. The relationships between the parameters of the model and the parameters of those Besov spaces within which realizations will fall are investigated. The models allow functions with specified regularity properties to be generated. They can potentially be used as priors in a Bayesian approach to curve estimation, extending current standard wavelet methods to be free from the dyadic positions and scales of the basis functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning sparse codes for image reconstruction

We propose a new algorithm for the design of overcomplete dictionaries for sparse coding that generalizes the Sparse Coding Neural Gas (SCNG) algorithm such that it is not bound to a particular approximation method for the coefficients of the dictionary elements. In an application to image reconstruction, a dictionary that has been learned using this algorithm outperforms a dictionary that has ...

متن کامل

Stochastic Expansions Using Continuous Dictionaries : Lévy Adaptive Regression Kernels

This article describes a new class of prior distributions for nonparametric function estimation. The unknown function is modeled as a limit of weighted sums of kernels or generator functions indexed by continuous parameters that control local and global features such as their translation, dilation, modulation and shape. Lévy random fields and their stochastic integrals are employed to induce pr...

متن کامل

Beyond Coherence : Recovering Structured Time - Frequency Representations

We consider the problem of recovering a structured sparse representation of a signal in an overcomplete time-frequency dictionary with a particular structure. For infinite dictionaries that are the union of a nice wavelet basis and a Wilson basis, sufficient conditions are given for the Basis Pursuit and (Orthogonal) Matching Pursuit algorithms to recover a structured representation of an admis...

متن کامل

Compressed Sensing Using Adaptive Wavelet Transform and Overcomplete Dictionary

In this paper, we present a new compressed sensing implementation process for one dimension signal reconstruction. Firstly, one level wavelet decomposition of the one dimensional signal was finished. For using the adaptive wavelet transform based on lifting wavelet transforms, we can achieve the detail signals being zero (or almost zero) at big probability, so the signal has the better linear a...

متن کامل

ECG Signal Reconstruction from Undersampled Measurement Using A Trained Overcomplete Dictionary

We propose a new approach to reconstructing ECG signal from undersampled data based on constructing a combined overcomplete dictionary. The dictionary is obtained by combining the trained dictionary by K-SVD dictionary learning algorithm with universal types of dictionary such as DCT or wavelet basis. Using the trained overcomplete dictionary, the proposed method can find sparse approximation b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999