Effects on muscle activity from microstimuli applied to somatosensory and motor cortex during voluntary movement in the monkey.
نویسندگان
چکیده
It is well known that electrical stimulation of primary somatosensory cortex (SI) evokes movements that resemble those evoked from primary motor cortex. These findings have led to the concept that SI may possess motor capabilities paralleling those of motor cortex and speculation that SI could function as a robust relay mediating motor responses from central and peripheral inputs. The purpose of this study was to rigorously examine the motor output capabilities of SI areas with the use of the techniques of spike- and stimulus-triggered averaging of electromyographic (EMG) activity in awake monkeys. Unit recordings were obtained from primary motor cortex and SI areas 3a, 3b, 1, and 2 in three rhesus monkeys. Spike-triggered averaging was used to assess the output linkage between individual cells and motoneurons of the recorded muscles. Cells in motor cortex producing postspike facilitation (PSpF) in spike-triggered averages of rectified EMG activity were designated corticomotoneuronal (CM) cells. Motor output efficacy was also assessed by applying stimuli through the microelectrode and computing stimulus-triggered averages of rectified EMG activity. One hundred seventy-one sites in motor cortex and 68 sites in SI were characterized functionally and tested for motor output effects on muscle activity. The incidence, character, and magnitude of motor output effects from SI areas were in sharp contrast to effects from CM cell sites in primary motor cortex. Of 68 SI cells tested with spike-triggered averaging, only one area 3a cell produced significant PSpF in spike-triggered averages of EMG activity. In comparison, 20 of 171 (12%) motor cortex cells tested produced significant postspike effects. Single-pulse intracortical microstimulation produced effects at all CM cell sites in motor cortex but at only 14% of SI sites. The large fraction of SI effects that was inhibitory represented yet another marked difference between CM cell sites in motor cortex and SI sites (25% vs 93%). The fact that motor output effects from SI were frequently absent or very weak and predominantly inhibitory emphasizes the differing motor capabilities of SI compared with primary motor cortex.
منابع مشابه
حرکت ارادی پتانسیل های ناشی از قشر حسی پیکری را تعدیل می کند
An early component of the somatosensory evoked potential, arising from the primary sensory cortex in man is attenuated during voluntary finger movement. The median nerve at the wrist was stimulated while the subject performed fractionated finger movements with the same hand. Subcortical components of the somatosensory evoked potential were not changed but the P25 cortical component was attenuat...
متن کاملMovement-Related Sensorimotor High-Gamma Activity Mainly Represents Somatosensory Feedback
Somatosensation plays pivotal roles in the everyday motor control of humans. During active movement, there exists a prominent high-gamma (HG >50 Hz) power increase in the primary somatosensory cortex (S1), and this provides an important feature in relation to the decoding of movement in a brain-machine interface (BMI). However, one concern of BMI researchers is the inflation of the decoding per...
متن کاملSomatosensory Response Properties of Excitatory and Inhibitory Neurons in Rat 1 Motor Cortex
17 18 In sensory cortical networks, peripheral inputs differentially activate excitatory and inhibitory 19 neurons. Inhibitory neurons typically have larger responses and broader receptive field tuning 20 compared to excitatory neurons. These differences are thought to underlie the powerful 21 feed-forward inhibition that occurs in response to sensory input. In the motor cortex, as in the 22 so...
متن کاملSomatosensory response properties of excitatory and inhibitory neurons in rat motor cortex.
In sensory cortical networks, peripheral inputs differentially activate excitatory and inhibitory neurons. Inhibitory neurons typically have larger responses and broader receptive field tuning compared with excitatory neurons. These differences are thought to underlie the powerful feedforward inhibition that occurs in response to sensory input. In the motor cortex, as in the somatosensory corte...
متن کاملDifferential effects of muscle contraction from various body parts on neuromagnetic somatosensory responses.
We studied eight healthy subjects with a whole-scalp 306-channel neuromagnetometer to explore the effect of motor activity from different body parts on somatosensory responses to left median nerve stimulation. The stimuli produced clear tactile sensation without any motor movement. In the rest condition, the subject had no task. During contraction conditions, the subject had to maintain submaxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 77 5 شماره
صفحات -
تاریخ انتشار 1997