Vasopressin regulates renal calcium excretion in humans
نویسندگان
چکیده
Antidiuretic hormone or arginine vasopressin (AVP) increases water reabsorption in the collecting ducts of the kidney. Three decades ago, experimental models have shown that AVP may increase calcium reabsorption in rat kidney. The objective of this study was to assess whether AVP modulates renal calcium excretion in humans. We analyzed calcium, potassium, and sodium fractional excretion in eight patients affected by insipidus diabetes (nephrogenic or central) under acute vasopressin receptor agonist action and in 10 patients undergoing oral water load test affected or not by inappropriate antidiuretic hormone secretion (SIADH). Synthetic V2 receptor agonist (dDAVP) reduced significantly calcium fractional excretion from 1.71% to 0.58% (P < 0.05) in patients with central diabetes insipidus. In patients with nephrogenic diabetes insipidus (resistant to AVP), calcium fractional excretion did not change significantly after injection (0.48-0.68%, P = NS). In normal subjects undergoing oral water load test, calcium fractional excretion increased significantly from 1.02% to 2.54% (P < 0.05). Patients affected by SIADH had a high calcium fractional excretion at baseline that remained stable during test from 3.30% to 3.33% (P = NS), possibly resulting from a reduced calcium absorption in renal proximal tubule. In both groups, there was a significant correlation between urine output and calcium renal excretion. In humans, dDAVP decreases calcium fractional excretion in the short term. Conversely, water intake, which lowers AVP concentration, increases calcium fractional excretion. The correlation between urine output and calcium excretion suggests that AVP-related antidiuresis increases calcium reabsorption in collecting ducts.
منابع مشابه
Renal Concentrating Ability and Calcium Load Handling in the Spontaneously Hypertensive Rate
The renal response to an oral load of calcium and the renal concentrating ability of spontaneously hypertensive (SH) and normotensive (WKY) rats were examined. The response to calcium loading was similar between SH and WKY animals in terms of urine volume, osmolality and calcium excretion. Compared to WKY controls, the ability of SH rats to concentrate urine during dehydration was decreased. Th...
متن کاملCalcium-Sensing Receptor and Aquaporin 2 Interplay in Hypercalciuria-Associated Renal Concentrating Defect in Humans. An In Vivo and In Vitro Study
One mechanism proposed for reducing the risk of calcium renal stones is activation of the calcium-sensing receptor (CaR) on the apical membranes of collecting duct principal cells by high luminal calcium. This would reduce the abundance of aquaporin-2 (AQP2) and in turn the rate of water reabsorption. While evidence in cells and in hypercalciuric animal models supports this hypothesis, the rele...
متن کاملPathogenic role of cyclic AMP in the impairment of urinary concentrating ability in acute hypercalcemia.
A possible association between the impairment of urinary concentrating ability and an impairment of the vasopressin-dependent cyclic AMP system in hypercalcemia was investigated in rat kidneys both in vivo and in vitro. The increases of urinary osmolality and negative free water clearance and the increase of urinary cyclic AMP excretion by vasopressin injection were significantly less in the hy...
متن کاملVasopressin V2 receptors, ENaC, and sodium reabsorption: a risk factor for hypertension?
Excessive sodium reabsorption by the kidney has long been known to participate in the pathogenesis of some forms of hypertension. In the kidney, the final control of NaCl reabsorption takes place in the distal nephron through the amiloride-sensitive epithelial sodium channel (ENaC). Liddle's syndrome, an inherited form of hypertension due to gain-of-function mutations in the genes coding for EN...
متن کاملVasopressin-V2 receptor stimulation reduces sodium excretion in healthy humans.
In addition to its effect on water permeability, vasopressin, through its V2 receptors (AVPR2), stimulates Na reabsorption in the collecting duct by increasing the activity of the amiloride-sensitive sodium channel ENaC. This study evaluated whether dDAVP (a potent AVPR2 agonist) reduces sodium excretion in healthy humans (n = 6) and in patients with central (C; n = 2) or nephrogenic (N) diabet...
متن کامل