In Caenorhabditis elegans Nanoparticle-Bio-Interactions Become Transparent: Silica-Nanoparticles Induce Reproductive Senescence
نویسندگان
چکیده
While expectations and applications of nanotechnologies grow exponentially, little is known about interactions of engineered nanoparticles with multicellular organisms. Here we propose the transparent roundworm Caenorhabditis elegans as a simple but anatomically and biologically well defined animal model that allows for whole organism analyses of nanoparticle-bio-interactions. Microscopic techniques showed that fluorescently labelled nanoparticles are efficiently taken up by the worms during feeding, and translocate to primary organs such as epithelial cells of the intestine, as well as secondary organs belonging to the reproductive tract. The life span of nanoparticle-fed Caenorhabditis elegans remained unchanged, whereas a reduction of progeny production was observed in silica-nanoparticle exposed worms versus untreated controls. This reduction was accompanied by a significant increase of the 'bag of worms' phenotype that is characterized by failed egg-laying and usually occurs in aged wild type worms. Experimental exclusion of developmental defects suggests that silica-nanoparticles induce an age-related degeneration of reproductive organs, and thus set a research platform for both, detailed elucidation of molecular mechanisms and high throughput screening of different nanomaterials by analyses of progeny production.
منابع مشابه
Anti-amyloid compounds protect from silica nanoparticle-induced neurotoxicity in the nematode C. elegans.
Identifying nanomaterial-bio-interactions are imperative due to the broad introduction of nanoparticle (NP) applications and their distribution. Here, we demonstrate that silica NPs effect widespread protein aggregation in the soil nematode Caenorhabditis elegans ranging from induction of amyloid in nucleoli of intestinal cells to facilitation of protein aggregation in body wall muscles and axo...
متن کاملCerium oxide nanoparticle aggregates affect stress response and function in Caenorhabditis elegans
OBJECTIVE The continual increase in production and disposal of nanomaterials raises concerns regarding the safety of nanoparticles on the environmental and human health. Recent studies suggest that cerium oxide (CeO2) nanoparticles may possess both harmful and beneficial effects on biological processes. The primary objective of this study is to evaluate how exposure to different concentrations ...
متن کاملGene Pathways That Delay Caenorhabditis elegans Reproductive Senescence
Reproductive senescence is a hallmark of aging. The molecular mechanisms regulating reproductive senescence and its association with the aging of somatic cells remain poorly understood. From a full genome RNA interference (RNAi) screen, we identified 32 Caenorhabditis elegans gene inactivations that delay reproductive senescence and extend reproductive lifespan. We found that many of these gene...
متن کاملInteraction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle
Interaction of nanoparticles with proteins is the basis of nanoparticle bio-reactivity. This interaction gives rise to the formation of a dynamic nanoparticle-protein corona. The protein corona may influence cellular uptake, inflammation, accumulation, degradation and clearance of the nanoparticles. Furthermore, the nanoparticle surface can induce conformational changes in adsorbed protein mole...
متن کاملBio-electrospraying the nematode Caenorhabditis elegans: studying whole-genome transcriptional responses and key life cycle parameters.
Bio-electrospray, the direct jet-based cell handling approach, is able to handle a wide range of cells (spanning immortalized, primary to stem cells). Studies at the genomic, genetic and the physiological levels have shown that, post-treatment, cellular integrity is unperturbed and a high percentage (more than 70%, compared with control) of cells remain viable. Although, these results are impre...
متن کامل