A linewidth-narrowed and frequency-stabilized dye laser for application in laser cooling of molecules.

نویسندگان

  • D P Dai
  • Y Xia
  • Y N Yin
  • X X Yang
  • Y F Fang
  • X J Li
  • J P Yin
چکیده

We demonstrate a robust and versatile solution for locking the continuous-wave dye laser for applications in laser cooling of molecules which need linewidth-narrowed and frequency-stabilized lasers. The dye laser is first stabilized with respect to a reference cavity by Pound-Drever-Hall (PDH) technique which results in a single frequency with the linewidth 200 kHz and short-term stabilization, by stabilizing the length of the reference cavity to a stabilized helium-neon laser we simultaneously transfer the ± 2 MHz absolute frequency stability of the helium-neon laser to the dye laser with long-term stabilization. This allows the dye laser to be frequency chirped with the maximum 60 GHz scan range while its frequency remains locked. It also offers the advantages of locking at arbitrary dye laser frequencies, having a larger locking capture range and frequency scanning range to be implemented via software. This laser has been developed for the purpose of laser cooling a molecular magnesium fluoride beam.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HIGH RESOLUTION LASER SPECTROSCOPY IN COLD SUPERSONIC MOLECULAR BEAMS COOLING, REDUCTION OF DOPPLER WIDTH AND APPLICATION

The cooling of molecules during the adiabatic expansion of supersonic seeded molecular beams is reviewed and illustrated by the example of NO -molecules. The reduction of the Doppler width by collimation of the beam and the cooling to low rotational temperatures brings a significant simplification of the complex NO -absorption spectrum and allows its assignment. The measured rotational tem...

متن کامل

Subkilohertz linewidth room-temperature mid-infrared quantum cascade laser using a molecular sub-Doppler reference.

We report on the narrowing of a room-temperature mid-IR quantum cascade laser by frequency locking it to a CO2 sub-Doppler transition obtained by polarization spectroscopy. A locking bandwidth of 250 kHz has been achieved. The laser linewidth is narrowed by more than two orders of magnitude below 1 kHz, and its absolute frequency is stabilized at the same level.

متن کامل

A Comparative Study Between 595-Nm Pulsed Dye Laser with Cutaneous Compression and Cryotherapy in the Treatment of Solar Lentigines

Background: Although cryotherapy is still the first-line therapy for solar lentigines, due to side effects such as post-inflammatory hyperpigmentation (PIH), especially in patients with darker skin types, pigment specific lasers should be considered as initial treatment. The aim of this study was to evaluate the efficacy and safety of cryotherapy in comparison with 595-nm pulsed dye laser (PDL)...

متن کامل

Vii. Quantum Electronics

The primary objective in this program is the development of an extremely stable, low-jitter, single-frequency cw dye laser for use in a variety of applications such as optical communication and ultrahigh-resolution spectroscopy, and for studying fundamental interactions between radiation and matter. During the past year we have been concerned with the short-term stabilization of commercially av...

متن کامل

Active linewidth-narrowing of a mid-infrared quantum cascade laser without optical reference.

We report on a technique for frequency noise reduction and linewidth-narrowing of a distributed-feedback mid-IR quantum cascade laser (QCL) that does not involve any optical frequency reference. The voltage fluctuations across the QCL are sensed, amplified and fed back to the temperature of the QCL at a fast rate using a near-IR laser illuminating the top of the QCL chip. A locking bandwidth of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 22 23  شماره 

صفحات  -

تاریخ انتشار 2014