On Riemann surfaces of genus g with 4g automorphisms

نویسندگان

  • Emilio Bujalance
  • Antonio F. Costa
  • Milagros Izquierdo
  • Ravi S. Kulkarni
چکیده

We determine, for all genus g ≥ 2 the Riemann surfaces of genus g with exactly 4g automorphisms. For g 6= 3, 6, 12, 15 or 30, this surfaces form a real Riemann surface Fg in the moduli space Mg: the Riemann sphere with three punctures. We obtain the automorphism groups and extended automorphism groups of the surfaces in the family. Furthermore we determine the topological types of the real forms of real Riemann surfaces in Fg. The set of real Riemann surfaces in Fg consists of three intervals its closure in the Deligne-Mumford compactification of Mg is a closed Jordan curve. We describe the nodal surfaces that are limits of real Riemann surfaces in Fg. 2000 Mathematics Subject Classification: Primary 30F10; Secondary 14H15, 30F60.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-dimensional families of Riemann surfaces of genus g with 4g+4automorphims

We prove that the maximal number ag + b of automorphisms of equisymmetric and complex-uniparametric families of Riemann surfaces appearing in all genera is 4g+ 4. For each integer g ≥ 2 we find an equisymmetric complex-uniparametric family Ag of Riemann surfaces of genus g having automorphism group of order 4g + 4. For g ≡ −1mod4 we present another uniparametric family Kg with automorphism grou...

متن کامل

Automorphisms of Riemann Surfaces

This paper consists of mainly two parts. First it is a survey of some results on automorphisms of Riemann surfaces and Fuchsian groups. A theorem of Hurwitz states that the maximal automorphism group of a compact Riemann surface of genus 9 has order at most 84(g-1). It is well-known that the Klein quartic is the unique genus 3 curve that attains the Hurwitz bound. We will show in the second par...

متن کامل

Pseudo-real Riemann surfaces and chiral regular maps

A Riemann surface is called pseudo-real if it admits anticonformal automorphisms but no anticonformal involution. Pseudo-real Riemann surfaces appear in a natural way in the study of the moduli space MKg of Riemann surfaces considered as Klein surfaces. The moduli space Mg of Riemann surfaces of genus g is a two-fold branched covering of MKg , and the preimage of the branched locus consists of ...

متن کامل

On Cyclic Groups of Automorphisms of Riemann Surfaces

The question of extendability of the action of a cyclic group of automorphisms of a compact Riemann surface is considered. Particular attention is paid to those cases corresponding to Singerman's list of Fuchsian groups which are not nitely-maximal, and more generally to cases involving a Fuchsian triangle group. The results provide partial answers to the question of which cyclic groups are the...

متن کامل

Ela Dihedral Groups of Automorphisms of Compact Riemann Surfaces of Genus Two

In this short note, the conjugacy classes of finite dihedral subgroups of the 4 × 4 integral symplectic group are considered. A complete list of representatives of the classes is obtained, among them six classes are realizable by analytic automorphisms of compact connected Riemann surfaces of genus two.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016