Assessing Foraminal Stenosis in the Cervical Spine: A Comparison of Three-Dimensional Computed Tomographic Surface Reconstruction to Two-Dimensional Modalities
نویسندگان
چکیده
STUDY DESIGN Retrospective radiographic study. OBJECTIVE The optimal radiographic modality for assessing cervical foraminal stenosis is unclear. Determination on conventional axial cuts is made difficult due in part to the complex, oblique orientation of the cervical neuroforamen. The utility of 3-dimensonal (3D) computed tomography (CT) reconstruction in improving neuroforaminal assessment is not well understood. The objective of this study is to determine inter-rater variability in grading cervical foraminal stenosis using 3 different CT imaging modalities: 3D CT surface reconstructions (3DSR), 2D sagittal oblique multiplanar reformations (2D-SOMPR), and conventional 2D axial CT imaging. METHODS Pretreatment CT scans of 25 patients undergoing surgery for cervical spondylotic radiculopathy were analyzed at 2 levels: C5-C6 and C6-C7. Simple interrater agreement and kappa-Fleiss coefficients were calculated for each imaging modality and stenosis grade. Image reviewers (attending spine surgeon, attending neuroradiologist, spine fellow) interpreted each CT scan in 3 different formats: axial, 2D-SOMPR, and 3DSR. Four cervical foramina at 2 spinal levels were graded as normal (no stenosis), mild (≤25% stenosis), moderate (25%-50% stenosis), or severe (>50% stenosis). RESULTS Across all imaging modalities, interrater reliability was fair when grading foraminal stenosis (κ < 0.4). Agreement was lowest for the axial images (κ = 0.119) and highest for the 3D CT reconstructions (κ = 0.334). 2D-SOMPR images also led to improved interrater reliability when compared with axial images (κ = 0.255). CONCLUSION Grading cervical foraminal stenosis using conventional axial CT imaging is difficult with low interrater reliability. CT modalities that provide a circumferential view of the cervical foramen, such as 2D-SOMPR and 3D CT reconstruction, had higher rates of interobserver reliability in grading foraminal stenosis than conventional axial cuts, with 3D having the highest. As these 3D reconstructions can be obtained at no additional cost or radiation exposure over a conventional CT scan, and because they can provide useful information in determining levels being considered for surgical decompression, we recommend they be utilized when evaluating cervical foramina.
منابع مشابه
Mandibular Dimensional Changes with aging in Three Dimensional Computed Tomographic Study in 21 to 50 Year old Men and Women
Introduction: Raising the knowledge of skeletal and soft tissue changes with aging has been highly essential due to an increasing demand for aesthetic facial surgery following aging. The aim of this study is to evaluate the three dimensional computed tomographic images and process of changes in mandible with aging. Materials and Methods: In this descriptive study, the facial CT scans were obta...
متن کاملDegenerative narrowing of the cervical spine neural foramina: evaluation with high-resolution 3DFT gradient-echo MR imaging.
Conventional two-dimensional Fourier transform (2DFT) MR evaluation of osteophytic disease of the cervical neural foramina is limited by section thickness, signal-to-noise problems, and CSF flow artifacts. We evaluated the role of thin-section, high-resolution, gradient-refocused three-dimensional Fourier transform (3DFT) MR imaging in assessing degenerative foraminal narrowing in the cervical ...
متن کاملComparison of noncontrast computed tomography and high-field magnetic resonance imaging in the evaluation of Great Danes with cervical spondylomyelopathy.
Computed tomography (CT) provides excellent bony detail, whereas magnetic resonance (MR) imaging is superior in evaluating the neural structures. The purpose of this prospective study was to assess interobserver and intermethod agreement in the evaluation of cervical vertebral column morphology and lesion severity in Great Danes with cervical spondylomyelopathy by use of noncontrast CT and high...
متن کاملThree-dimensional reconstruction of New Zealand rabbit antebrachium by multidetector computed tomography
The aim of this study was to reveal biometric peculiarities of New Zealand white rabbit antebrachium (radius and ulna) by means of three-dimensional (3D) reconstruction of multidetector computed tomography (MDCT) images. Under general anesthesia, the antebrachiums of a total of sixteen rabbits of both sexes were scanned with a general diagnostic MDCT. Biometric measurements of the reconstructed...
متن کاملTomographic Reconstruction of the Ionospheric Electron Density in term of Wavelets
Ionospheric tomography is a method to investigate the ionospheric electron density in two or three dimensions. In this study, the function-based tomographic technique has been used for regional reconstruction of a 3D tomographic model of the ionospheric electron density using the GPS measurements of the Iranian Permanent GPS Network. Two-dimensional Haar wavelets and empirical orthogonal functi...
متن کامل