Ant Based Semi-supervised Classification
نویسندگان
چکیده
Semi-supervised classification methods make use of the large amounts of relatively inexpensive available unlabeled data along with the small amount of labeled data to improve the accuracy of the classification. This article presents a novel ‘self-training’ based semi-supervised classification algorithm using the property of aggregation pheromone found in natural behavior of real ants. The proposed algorithm is evaluated with real life benchmark data sets in terms of classification accuracy. Also the method is compared with two conventional supervised classification methods and two recent semi-supervised classification techniques. Experimental results show the potentiality of the proposed algorithm.
منابع مشابه
Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کاملHierarchical Wireless Multimedia Sensor Networks for Collaborative Hybrid Semi-Supervised Classifier Learning
Wireless multimedia sensor networks (WMSN) have recently emerged as one ofthe most important technologies, driven by the powerful multimedia signal acquisition andprocessing abilities. Target classification is an important research issue addressed in WMSN,which has strict requirement in robustness, quickness and accuracy. This paper proposes acollaborative semi-supervised classifier learning al...
متن کاملDetecting Concept Drift in Data Stream Using Semi-Supervised Classification
Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...
متن کاملTV-SVM: Total Variation Support Vector Machine for Semi-Supervised Data Classification
We introduce semi-supervised data classification algorithms based on total variation (TV), Reproducing Kernel Hilbert Space (RKHS), support vector machine (SVM), Cheeger cut, labeled and unlabeled data points. We design binary and multi-class semi-supervised classification algorithms. We compare the TV-based classification algorithms with the related Laplacian-based algorithms, and show that TV...
متن کاملSemi-Supervised Classification Based on Mixture Graph
Graph-based semi-supervised classification heavily depends on a well-structured graph. In this paper, we investigate a mixture graph and propose a method called semi-supervised classification based on mixture graph (SSCMG). SSCMG first constructs multiple k nearest neighborhood (kNN) graphs in different random subspaces of the samples. Then, it combines these graphs into a mixture graph and inc...
متن کامل