Carbon Sources for Polyhydroxyalkanoates and an Integrated Biorefinery
نویسندگان
چکیده
Polyhydroxyalkanoates (PHAs) are a group of bioplastics that have a wide range of applications. Extensive progress has been made in our understanding of PHAs' biosynthesis, and currently, it is possible to engineer bacterial strains to produce PHAs with desired properties. The substrates for the fermentative production of PHAs are primarily derived from food-based carbon sources, raising concerns over the sustainability of their production in terms of their impact on food prices. This paper gives an overview of the current carbon sources used for PHA production and the methods used to transform these sources into fermentable forms. This allows us to identify the opportunities and restraints linked to future sustainable PHA production. Hemicellulose hydrolysates and crude glycerol are identified as two promising carbon sources for a sustainable production of PHAs. Hemicellulose hydrolysates and crude glycerol can be produced on a large scale during various second generation biofuels' production. An integration of PHA production within a modern biorefinery is therefore proposed to produce biofuels and bioplastics simultaneously. This will create the potential to offset the production cost of biofuels and reduce the overall production cost of PHAs.
منابع مشابه
A Review of Membrane Technology for Integrated Forest Biorefinery
More recently, the concept of integrated forest biorefinery (IFBR) has received much attention as a promising solution for the struggling forest industry in North America and Europe to overcome its difficult financial period and competes globally. This new business paradigm offers a broad range of potentially attractive products, from bioenergy to value-added green organic chemicals in addition...
متن کاملIntegrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes
Recently, issues concerning the sustainable and harmless disposal of organic solid waste have generated interest in microbial biotechnologies aimed at converting waste materials into bioenergy and biomaterials, thus contributing to a reduction in economic dependence on fossil fuels. To valorize biomass, waste materials derived from agriculture, food processing factories, and municipal organic w...
متن کاملOne-Factor-at-a-Time Optimization of Polyhydroxybutyrate Production and Growth of Alcaligenes eutrophus by Altering Culture Parameters and Incubation Time
Polyhydroxyalkanoates (PHAs) are bioplastics derived from renewable resources such as vegetable oils, corn starch, or microbes. The polyhydroxybutyrate (PHB) is a short-chain-length PHA, and the most important bioplastic produced by certain microorganisms in the presence of excess carbon sources. In this study batch cultivation of Alcaligenes eutrophus with the aim of increasing PHB production ...
متن کاملEnhanced Agarose and Xylan Degradation for Production of Polyhydroxyalkanoates by Co-Culture of Marine Bacterium, Saccharophagus degradans and Its Contaminant, Bacillus cereus
Over reliance on energy or petroleum products has raised concerns both in regards to the depletion of their associated natural resources as well as their increasing costs. Bioplastics derived from microbes are emerging as promising alternatives to fossil fuel derived petroleum plastics. The development of a simple and eco-friendly strategy for bioplastic production with high productivity and yi...
متن کاملDevelopment of a new strategy for production of medium-chain-length polyhydroxyalkanoates by recombinant Escherichia coli via inexpensive non-fatty acid feedstocks.
Pseudomonas putida KT2440 is capable of producing medium-chain-length polyhydroxyalkanoates (MCL-PHAs) when grown on unrelated carbon sources during nutrient limitation. Transcription levels of genes putatively involved in PHA biosynthesis were assessed by quantitative real-time PCR (qRT-PCR) in P. putida grown on glycerol as a sole carbon source. The results showed that two genes, phaG and the...
متن کامل