Feedback control of mesolimbic somatodendritic dopamine release in rat brain.

نویسندگان

  • S Rahman
  • W J McBride
چکیده

The objective of this study was to examine the role of dopamine (DA) receptors in the nucleus accumbens (ACB) in controlling feedback regulation of mesolimbic somatodendritic DA release in the ventral tegmental area (VTA) of Wistar rats using ipsilateral dual-probe in vivo microdialysis. Perfusion of the ACB for 60 min with the DA uptake inhibitor GBR-12909 (10-1,000 microM) or nomifensine (10-1,000 microM) dose-dependently increased the extracellular levels of DA in ACB and concomitantly reduced the extracellular levels of DA in the VTA. Coperfusion of 100 microM nomifensine with either 100 microM SCH-23390 (SCH), a D1 antagonist, or 100 microM sulpiride (SUL), a D2 receptor antagonist, produced either an additive (for SCH) or a synergistic (for SUL) elevation in the extracellular levels of DA in the ACB, whereas the reduction in the extracellular levels of DA in the VTA produced by nomifensine alone was completely prevented by addition of either antagonist. Application of 100 microM SCH or SUL alone through the microdialysis probe in the ACB increased the extracellular levels of DA in the ACB, whereas the extracellular levels of DA in the VTA remained unchanged. Overall, the results suggest that (a) increasing the synaptic levels of DA in the ACB activates a long-loop negative feedback pathway to the VTA involving both D1 and D2 postsynaptic receptors and (b) terminal DA release within the ACB is regulated directly by D2 autoreceptors and may be indirectly regulated by D1 receptors, possibly on interneurons and/or through postsynaptic inhibition of the negative feedback loop.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acute fasting increases somatodendritic dopamine release in the ventral tegmental area.

Fasting and food restriction alter the activity of the mesolimbic dopamine system to affect multiple reward-related behaviors. Food restriction decreases baseline dopamine levels in efferent target sites and enhances dopamine release in response to rewards such as food and drugs. In addition to releasing dopamine from axon terminals, dopamine neurons in the ventral tegmental area (VTA) also rel...

متن کامل

Acute Fasting Increases Somatodendritic Dopamine Release in the Ventral

25 Fasting and food restriction alter the activity of the mesolimbic dopamine system 26 to affect multiple reward-related behaviors. Food restriction decreases baseline 27 dopamine levels in efferent target sites and enhances dopamine release in response to 28 rewards such as food and drugs. In addition to releasing dopamine from axon 29 terminals, dopamine neurons in the ventral tegmental area...

متن کامل

Species differences in somatodendritic dopamine transmission determine D2-autoreceptor-mediated inhibition of ventral tegmental area neuron firing.

The somatodendritic release of dopamine within the ventral tegmental area (VTA) and substantia nigra pars compacta activates inhibitory postsynaptic D2-receptors on dopaminergic neurons. The proposed mechanisms that regulate this form of transmission differ between electrochemical studies using rats and guinea pigs and electrophysiological studies using mice. This study examines the release and...

متن کامل

Basal somatodendritic dopamine release requires snare proteins.

Dopaminergic neurons have the capacity to release dopamine not only from their axon terminals, but also from their somatodendritic compartment. The actual mechanism of somatodendritic dopamine release has remained controversial. Here we established for the first time a rat primary neuron culture model to investigate this phenomenon and use it to study the mechanism under conditions of non-stimu...

متن کامل

The Involvement of Intra-Hippocampal Dopamine Receptors in the Conditioned Place Preference Induced By Orexin Administration into the Rat Ventral Tegmental Area

The activity of dopamine (DA)-containing neurons in the ventral tegmental area (VTA) is a key mechanism in mesolimbic reward processing that has modulatory effects on different diencephalic structures like hippocampus (HIP), and receives inhibitory feedback and excitatory feed forward control. In addition, within the hippocampus, DA receptors are mostly located in the dorsal part (CA1) and dopa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurochemistry

دوره 74 2  شماره 

صفحات  -

تاریخ انتشار 2000